6. Environmental Context

On Earth, the Archaean aeon lasted from 4.0 to 2.5 Ga; it corresponds to a relatively stable period. Compared with today, internal Earth heat production was several times greater resulting in high geothermal flux that induced the genesis of rocks such as komatiites and TTG suites, which are no more generated on Earth since 2.5 Ga. Similarly, the details of plate tectonic modalities (plate size, plate motion rate, plate thickness, tectonic style, irregular crustal growth, etc...) were different of modern plate tectonics. Both atmosphere and ocean compositions have been progressively modified and the greater heat production favoured the development of hydrothermalism and therefore created niches potentially favourable for the development of some forms of life. Catastrophic events such as giant meteorite falls or world-sized glaciations drastically and suddenly changed the environment of Earth surface, thus being able to strongly affect development of life. Even if specialists still debate about the age of the oldest indubitable fossil trace of life, Archaean can be considered as having been extremely favourable for life development and diversification.

[1]  A. Bekker,et al.  Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen , 2004 .

[2]  M. Gutscher,et al.  Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America) , 2003 .

[3]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[4]  P. Claeys,et al.  New evidence for a large Palaeoproterozoic impact: spherules in a dolomite layer in the Ketilidian orogen, South Greenland , 2001, Journal of the Geological Society.

[5]  J. Burns,et al.  Impact seeding and reseeding in the inner solar system. , 2005, Astrobiology.

[6]  Peter Hauschildt,et al.  Evolutionary models for solar metallicity low - mass stars: Mass - magnitude relationships and color - magnitude diagrams , 1998 .

[7]  P. Fritz,et al.  Saline Water and Gases in Crystalline Rocks , 1987 .

[8]  G. M. Young,et al.  Earth'S Oldest Reported Glaciation: Physical and Chemical Evidence From the Archean Mozaan Group (∼2.9 Ga) of South Africa , 1998, The Journal of Geology.

[9]  John W. Delano,et al.  Redox History of the Earth's Interior since ∼3900 Ma: Implications for Prebiotic Molecules , 2001, Origins of life and evolution of the biosphere.

[10]  H. Tsubota,et al.  Calcium in the South Pacific, and its correlation with carbonate alkalinity , 1974 .

[11]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[12]  J. Harris,et al.  Mass-Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth , 2002, Science.

[13]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[14]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[15]  D. Rubie,et al.  The Constancy of Upper Mantle fO2 Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric O2 , 2004 .

[16]  Konrad B. Krauskopf,et al.  Introduction to geochemistry , 1967 .

[17]  B. Marty,et al.  The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present , 2003 .

[18]  B. Simonson,et al.  The Sedimentary Record of Extraterrestrial Impacts in Deep‐Shelf Environments: Evidence from the Early Precambrian , 2001, The Journal of Geology.

[19]  S. Bengtson Early life on earth , 1994 .

[20]  James F. Kasting,et al.  Methane and climate during the Precambrian era , 2005 .

[21]  D. Schrag,et al.  On the initiation of a snowball Earth , 2002 .

[22]  C. Robin,et al.  Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slab melts and mantle wedge interactions , 2002 .

[23]  Thomas E. Graedel,et al.  The Budget and Cycle of Earth's Natural Chlorine , 1996 .

[24]  T. H. Pearce,et al.  On the structure of Archean greenstone belts , 1978 .

[25]  E. Spooner,et al.  Seafloor hydrothermal fluids, Ben Nevis area, Abitibi Greenstone Belt: Implications for Archean (̃2.7Ga) seawater properties , 2005 .

[26]  J. Kirschvink,et al.  A Negative Fold Test on the Lorrain Formation of the Huronian Supergroup: Uncertainty on the Paleolatitude of the Paleoproterozoic Gowganda Glaciation , 2002 .

[27]  F. Selsis The Prebiotic Atmosphere of the Earth , 2004 .

[28]  H. Elderfield The oceans and marine geochemistry , 2006 .

[29]  White,et al.  Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test , 1998 .

[30]  G. Hanson,et al.  Mantle-derived Archaean monozodiorites and trachyandesites , 1984, Nature.

[31]  M. Gargaud,et al.  Lectures in astrobiology , 2005 .

[32]  B. Marty,et al.  Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity , 2003 .

[33]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[34]  B. Ménez,et al.  Biological control of Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia , 2004 .

[35]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[36]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[37]  J. Smit THE GLOBAL STRATIGRAPHY OF THE CRETACEOUS-TERTIARY BOUNDARY IMPACT EJECTA , 1999 .

[38]  G. González,et al.  Reseeding of early earth by impacts of returning ejecta during the late heavy bombardment , 2003 .

[39]  C. Sagan,et al.  Earth and Mars: Evolution of Atmospheres and Surface Temperatures , 1972, Science.

[40]  A. Glikson The astronomical connection of terrestrial evolution: crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2±0.1 Ga bombardment of the Earth–Moon system , 2001 .

[41]  B. Kamber,et al.  The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history , 2001 .

[42]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[43]  J. Gutzmer,et al.  Formation of jasper and andradite during low-temperature hydrothermal seafloor metamorphism, Ongeluk Formation, South Africa , 2001 .

[44]  R. Coleman,et al.  H2-rich fluids from serpentinization: geochemical and biotic implications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  N. Sleep,et al.  The habitat and nature of early life , 2001, Nature.

[46]  B. Glass,et al.  SPHERULE LAYERS—RECORDS OF ANCIENT IMPACTS , 2004 .

[47]  J. P. Greenwood,et al.  Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis , 2003 .

[48]  N. Snelling The chronology of the geological record , 1985 .

[49]  V. Gostin,et al.  ACRAMAN IMPACT EJECTA AND HOST SHALES - EVIDENCE FOR LOW-TEMPERATURE MOBILIZATION OF IRIDIUM AND OTHER PLATINOIDS , 1990 .

[50]  J. Kasting,et al.  Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere , 1993, The Journal of Geology.

[51]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[52]  G. Lugmair,et al.  Chromium in late archean spherule layers from Hamersley Basin, Western Australia: Isotopic evidence for extraterrestrial component , 2002 .

[53]  J. Veizer,et al.  87Sr/86Sr in Precambrian carbonates as an index of crustal evolution , 1976 .

[54]  Donald W. Davis,et al.  Discovery of distal ejecta from the 1850 Ma Sudbury impact event , 2005 .

[55]  Frank Asaro,et al.  Spherule beds 3.47-3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. , 2003, Astrobiology.

[56]  D. D. Marais,et al.  When Did Photosynthesis Emerge on Earth? , 2000, Science.

[57]  A. Hofmann,et al.  Mantle plumes and episodic crustal growth , 1994, Nature.

[58]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[59]  A. Knoll The geological consequences of evolution , 2003 .

[60]  N. Sleep,et al.  Initiation of clement surface conditions on the earliest Earth , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[62]  C. Robin,et al.  Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes: The Geology and Petrology of Cayambe Volcanic Complex (Ecuador) , 2005 .

[63]  F. Kyte,et al.  Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: Remnants of hot, early ejecta from the Chicxulub impact? , 1995 .

[64]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[65]  Christopher P. McKay,et al.  Formation of methane in comet impacts: implications for Earth, Mars, and Titan , 2004 .

[66]  D. Lowe,et al.  The oldest impact deposits on Earth - First confirmation of an extraterrestrial component , 2000 .

[67]  H. Rollinson,et al.  Remnants of an Early Archaean (>3.75 Ga) sea-floor, hydrothermal system in the Isua Greenstone Belt , 2001 .

[68]  J. Gutzmer,et al.  Ancient sub-seafloor alteration of basaltic andesites of the Ongeluk Formation, South Africa: implications for the chemistry of Paleoproterozoic seawater , 2003 .

[69]  W. Nijman,et al.  Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia , 1998 .

[70]  E. Nisbet,et al.  8.01 – The Early History of Life , 2003 .

[71]  R. Blomqvist,et al.  5.17 – Deep Fluids in the Continents: II. Crystalline Rocks , 2003 .

[72]  S. Schütte,et al.  The Ongeluk basaltic andesite formation in Griqualand West, South Africa: submarine alteration in a 2222 Ma proterozoic sea , 1996 .

[73]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[74]  J. Bischoff,et al.  Seawater-basalt interaction at 200°C and 500 bars: Implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry , 1975 .

[75]  K. Condie Plate Tectonics and Crustal Evolution , 1977 .

[76]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[77]  A. Bekker,et al.  Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State , 2004, Science.

[78]  Christopher P. McKay,et al.  A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning , 2001, Nature.

[79]  L. Froget,et al.  Formation of spinels in cosmic objects during atmospheric entry: a clue to the Cretaceous-Tertiary boundary event , 1992 .

[80]  M. Norman,et al.  Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa , 1999 .

[81]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[82]  F. Albarède The growth of continental crust , 1998 .

[83]  J. H. Martin,et al.  Iron in north-east Pacific waters , 1982, Nature.

[84]  K. Condie EPISODIC CONTINENTAL GROWTH AND SUPERCONTINENTS : A MANTLE AVALANCHE CONNECTION? , 1998 .

[85]  D. Lowe,et al.  Geochemistry of Precambrian carbonates: I. Archean hydrothermal systems , 1989 .

[86]  David J. Stevenson,et al.  Impact frustration of the origin of life , 1988, Nature.

[87]  H. Edmonds,et al.  Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption , 1995, Nature.

[88]  Jennifer M. Robinson,et al.  PHANEROZOIC ATMOSPHERIC OXYGEN , 2003 .

[89]  R. H. Smithies The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite , 2000 .

[90]  V. Oberbeck,et al.  Impacts and the origin of life , 1989, Nature.

[91]  R. Rosenbauer,et al.  Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: A refined determination of the critical point and two-phase boundary of seawater , 1988 .

[92]  R. Kopp,et al.  The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[93]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[94]  F. Selsis,et al.  Dynamic Co-evolution of Peptides and Chemical Energetics, a Gateway to the Emergence of Homochirality and the Catalytic Activity of Peptides , 2004, Origins of life and evolution of the biosphere.

[95]  F. Chytil,et al.  Specificity of cellular retinol-binding protein for compounds with vitamin A activity , 1975, Nature.

[96]  C. Koeberl,et al.  Iridium anomalies and shocked quartz in a Late Archean spherule layer from the Pilbara craton: New evidence for a major asteroid impact at 2.63 Ga , 2004 .

[97]  K. Condie,et al.  Archean Geodynamics and Environments , 2006 .

[98]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[99]  D. Lowe,et al.  High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa , 2003 .

[100]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .

[101]  B. Simonson Petrographic criteria for recognizing certain types of impact spherules in well-preserved precambrian successions. , 2003, Astrobiology.

[102]  A. Glikson Oceanic mega-impacts and crustal evolution , 1999 .

[103]  S. Airieau,et al.  Observation of wavelength‐sensitive mass‐independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere , 2001 .

[104]  N. Beukes,et al.  Late Archean impact spherule layer in South Africa that may correlate with a Western Australian layer , 1999 .

[105]  H. Martin Adakitic magmas: modern analogues of Archaean granitoids , 1999 .

[106]  J. Moyen,et al.  Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth , 2002 .

[107]  M. Gutscher,et al.  Can slab melting be caused by flat subduction , 2000 .

[108]  J. Kasting,et al.  Greenhouse warming by CH4 in the atmosphere of early Earth. , 2000, Journal of geophysical research.

[109]  J. Kirschvink,et al.  Low-latitude glaciation in the Palaeoproterozoic era , 1997, Nature.

[110]  B. Fegley,et al.  Experimental studies of atmosphere-surface interactions on Venus , 2002 .

[111]  A. Isley Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation , 1995, The Journal of Geology.

[112]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[113]  M. Rosing,et al.  U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis , 2004 .

[114]  G. Lugmair,et al.  Early Archean spherule beds; chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type , 2003 .

[115]  D. Lowe,et al.  Spinel from Archean impact spherules , 1994 .

[116]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[117]  D. Pinti,et al.  Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the archean ocean and the deep biosphere , 2001 .

[118]  Alexander A. Pavlov,et al.  A Hydrogen-Rich Early Earth Atmosphere , 2005, Science.

[119]  L. P. Knauth,et al.  Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution , 2005 .

[120]  M. Burchell,et al.  Cratering in marine environments and on ice , 2004 .

[121]  P. Renne,et al.  Lunar impact history from (40)Ar/(39)Ar dating of glass spherules , 2000, Science.

[122]  Removal of volatile and semivolatile organic contamination from soil by air and steam flushing. , 2001, Journal of contaminant hydrology.

[123]  H. Martin Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas , 1986 .

[124]  J. Moyen,et al.  From the roots to the roof of a granite: The Closepet Granite of south India , 2003 .

[125]  B. Simonson,et al.  Have distal impact ejecta changed through geologic time , 2000 .

[126]  H. D. Holland,et al.  Paleosols and the evolution of atmospheric oxygen: a critical review. , 1998, American journal of science.

[127]  Y. Isozaki,et al.  Carbon isotopes and petrography of kerogens in ~ 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia , 2004 .

[128]  C. Ebinger,et al.  The Early Earth: Physical, Chemical and Biological Development , 2003 .

[129]  B. Simonson Geological evidence for a strewn field of impact spherules in the early Precambrian Hamersley Basin of Western Australia , 1992 .

[130]  C. D. de Ronde,et al.  Fluid chemistry of Archean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater , 1997 .

[131]  E. Spooner,et al.  The Cl−Br−I− composition of ∼3.23 Ga modified seawater: implications for the geological evolution of ocean halide chemistry , 1997 .

[132]  Knauth Lp Salinity history of the Earth's early ocean , 1998 .

[133]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[134]  V. Bennett,et al.  Progressive growth of the Earth's continental crust and depleted mantle: Geochemical constraints , 1994 .

[135]  M. Norman,et al.  Growth of early continental crust by partial melting of eclogite , 2003, Nature.

[136]  N. Arndt,et al.  Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites , 1993 .

[137]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[138]  Yanan Shen,et al.  The antiquity of microbial sulfate reduction , 2004 .

[139]  J. Farquhar,et al.  Multiple sulfur isotopes and the evolution of the atmosphere , 2003 .

[140]  I. Gilmour,et al.  Impacts and the Early Earth , 2000 .

[141]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[142]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[143]  D. Lowe,et al.  Ironstone pods in the Archean Barberton greenstone belt, South Africa: Earth's oldest seafloor hydrothermal vents reinterpreted as Quaternary subaerial springs , 2003 .

[144]  N. Sleep,et al.  Carbon dioxide cycling and implications for climate on ancient Earth , 2001 .

[145]  V. Bennett,et al.  Evolution of the early Earth: Constraints from 143Nd142Nd isotopic systematics , 1993 .

[146]  H. Robey,et al.  Bedforms produced by impact-generated tsunami, ∼2.6 Ga Hamersley basin, Western Australia , 2000 .

[147]  D. Gough Solar interior structure and luminosity variations , 1981 .

[148]  Usa,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES: I. HIGH-ENERGY IRRADIANCES (1–1700 A) , 2004 .