Nanomechanics Modeling and Simulation of Carbon Nanotubes

Carbon nanotubes (CNTs) have been perceived as having a great potential in nanoelectronic and nanomechanical devices. Recent advances of modeling and simulation at the nanoscale have led to a better understanding of the mechanical behaviors of carbon nanotubes. The modeling efforts incorporate atomic features into the continuum or structural mechanics theories, and the numerical simulations feature quantum mechanical approach and classical molecular dynamics. Multiscale and multiphysics modeling and simulation tools have also been developed to effectively bridge the different lengths and time scales, and to link basic scientific research with engineering application. The general approaches of the theoretical and numerical nanomechanics of CNTs are briefly reviewed. This paper is not intended to be a comprehensive review, but to introduce readers (especially those with traditional civil engineering or engineering mechanics backgrounds) to the new, interdisciplinary, or emerging fields in engineering mechanics, in this case the rapidly growing frontier of nanomechanics through the example of carbon nanotubes.

[1]  V. Crespi,et al.  Plastic Deformations of Carbon Nanotubes , 1998 .

[2]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[3]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[4]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[5]  Xi Chen,et al.  Mechanisms of nanoindentation on single-walled carbon nanotubes: The effect of nanotube length , 2006 .

[6]  K. Hwang,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes , 2006 .

[7]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[8]  Huajian Gao,et al.  The effect of nanotube radius on the constitutive model for carbon nanotubes , 2003 .

[9]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[10]  Design of a nanomechanical fluid control valve based on functionalized silicon cantilevers: coupling molecular mechanics with classical engineering design , 2004 .

[11]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[12]  Xi Chen,et al.  Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method , 2006 .

[13]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[14]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[15]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[16]  G. Odegard Equivalent-Continuum Modeling of Nanostructured Materials , 2007 .

[17]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[18]  Hanqing Jiang,et al.  A Finite-Temperature Continuum Theory Based on Interatomic , 2005 .

[19]  Y. Qiao,et al.  Effects of gas molecules on nanofluidic behaviors. , 2007, Journal of the American Chemical Society.

[20]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[21]  Tong-Yi Zhang Effects of static electric field on the fracture behavior of piezoelectric ceramics , 2002 .

[22]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[23]  T. Belytschko,et al.  Bond-breaking bifurcation states in carbon nanotube fracture , 2003 .

[24]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[25]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[26]  K. Hwang,et al.  Multiscale Analysis of Fracture of Carbon Nanotubes Embedded in Composites , 2005 .

[27]  Xi Chen,et al.  Strain sensing of carbon nanotubes: Numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes , 2005 .

[28]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[29]  Tsu-Wei Chou,et al.  Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach , 2004 .

[30]  Hanqing Jiang,et al.  Deformation and bifurcation analysis of boron-nitride nanotubes , 2006 .

[31]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[32]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[33]  T. Chou,et al.  Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization , 2002 .

[34]  D. Srivastava,et al.  Carbon nanotube "T Junctions": formation pathways and conductivity. , 2003, Physical review letters.

[35]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[36]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[37]  H. Johnson,et al.  The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes , 2004 .

[38]  P. Geubelle,et al.  An atomistic-based continuum theory for carbon nanotubes: Analysis of fracture nucleation , 2004 .

[39]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[40]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[41]  Robert P. H. Chang,et al.  A nanotube-based field-emission flat panel display , 1998 .

[42]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[43]  Rethinking a Vaccine's Risk , 2001, Science.

[44]  Philippe H. Geubelle,et al.  On the continuum modeling of carbon nanotubes , 2002 .

[45]  M. Grujicic,et al.  Finite element analysis-based design of a fluid-flow control nano-valve , 2005 .

[46]  Marco Buongiorno Nardelli,et al.  Mechanical deformations and coherent transport in carbon nanotubes , 1999 .

[47]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[48]  Xi Chen,et al.  Buckling behavior of single-walled carbon nanotubes and a targeted molecular mechanics approach , 2006 .

[49]  Huajian Gao,et al.  Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading , 2004 .

[50]  Ted Belytschko,et al.  Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations , 2005 .

[51]  Xi Chen,et al.  Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes , 2006 .

[52]  Andrew Y. T. Leung,et al.  A continuum model for zigzag single-walled carbon nanotubes , 2005 .

[53]  T. Belytschko,et al.  The role of vacancy defects and holes in the fracture of carbon nanotubes , 2004 .

[54]  Ted Belytschko,et al.  Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule , 2004 .

[55]  K. Hwang,et al.  Critical Evaluation of the Stiffening Effect of Carbon Nanotubes in Composites , 2004 .

[56]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[57]  Hiroshi Kadowaki,et al.  Bridging multi-scale method for localization problems , 2004 .

[58]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[59]  K. Hwang,et al.  Stone-Wales transformation: Precursor of fracture in carbon nanotubes , 2006 .

[60]  Huajian Gao,et al.  Self-folding and unfolding of carbon nanotubes , 2006 .

[61]  Mohammad Reza Saberi,et al.  Diamondoids-DNA nanoarchitecture: From nanomodules design to self-assembly , 2007 .

[62]  Xi Chen,et al.  The effects of chirality and boundary conditions on the mechanical properties of single-walled carbon nanotubes , 2007 .

[63]  Xi Chen,et al.  A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation , 2006, Nanotechnology.

[64]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[65]  Ted Belytschko,et al.  Continuum Mechanics Modeling and Simulation of Carbon Nanotubes , 2005 .

[66]  Yonggang Huang,et al.  Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes , 2005 .

[67]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[68]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[69]  F. Cuss Schering-Plough and allergic disease , 1999, Nature.

[70]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[71]  Bin Liu,et al.  Electron Transport in Deformed Carbon Nanotubes , 2004 .

[72]  Zhou Jianjun,et al.  STRAIN ENERGY AND YOUNG'S MODULUS OF SINGLE-WALL CARBON NANOTUBES CALCULATED FROM ELECTRONIC ENERGY-BAND THEORY , 2000 .

[73]  Shaker A. Meguid,et al.  Nanomechanics of single and multiwalled carbon nanotubes , 2004 .

[74]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[75]  Y. Shibutani,et al.  Mechanical integrity of carbon nanotubes for bending and torsion , 2004 .

[76]  J. Kysar,et al.  Numerical analysis of the radial breathing mode of armchair and zigzag single-walled carbon nanotubes under deformation , 2006 .

[77]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[78]  Bin Liu,et al.  Thermal Expansion of Single Wall Carbon Nanotubes , 2004 .

[79]  S.T. Barnard,et al.  Molecular Dynamics Simulation of Large-Scale Carbon Nanotubes on a Shared-Memory Architecture , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[80]  Huajian Gao,et al.  The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites , 2004 .

[81]  Xi Chen,et al.  Elastic Properties of Carbon Nanotubes in the Radial Direction , 2005 .

[82]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[83]  Mary C Boyce,et al.  Nonlinear structural mechanics based modeling of carbon nanotube deformation. , 2003, Physical review letters.

[84]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[85]  L. Nasdala,et al.  Development of a 4-node finite element for the computation of nano-structured materials , 2005 .

[86]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[87]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[88]  K. Hwang,et al.  Defect nucleation in carbon nanotubes under tension and torsion: Stone–Wales transformation , 2004 .

[89]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[90]  J. M. Kim,et al.  Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition , 1999 .

[91]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[92]  Gregory M. Odegard,et al.  Computational materials: Multi-scale modeling and simulation of nanostructured materials , 2005 .

[93]  Mitani,et al.  Stiffness of single-walled carbon nanotubes under large strain , 2000, Physical review letters.

[94]  Frank T. Fisher,et al.  Effects of nanotube waviness on the modulus of nanotube-reinforced polymers , 2002 .

[95]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[96]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[97]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[98]  Huajian Gao,et al.  Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model , 2003 .

[99]  Xi Chen,et al.  The effect of the displacement increment on the axial compressive buckling behaviours of single-walled carbon nanotubes , 2006 .

[100]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .