Inexact Adaptive Finite Element Methods for Elliptic PDE Eigenvalue Problems

Since decades modern technological applications lead to challenging PDE eigenvalue problems, e.g., vibrations of structures, modeling of photonic gap materials, analysis of the hydrodynamic stability, or calculations of energy levels in quantum mechanics [6, 58, 78, 95]. Recently, a lot of research is devoted to the so-called Adaptive Finite Element Methods (AFEM) [10]. In most AFEM approaches it is assumed that the resulting finite dimensional algebraic problem (linear system or eigenvalue problem) is solved exactly and computational costs for this part of the method as well as the fact that they are solved in finite precision arithmetic are typically ignored. The goal of this work is to analyze the influence of the accuracy of the algebraic approximation on the adaptivity process. Efficient and reliable adaptive algorithms should take into consideration not only discretization errors, but also iteration errors and especially for non-symmetric problems the conditioning of the eigenvalues. Our new AFEMLA algorithm extends the standard AFEM approaches to incorporate approximation errors into the adaptation process. Furthermore, we show that the adaptive mesh refinement may be steered by the discrete residual vector, e.g., when the problem is stated in a discrete formulation where only the underlying matrices and meshes are available. Moreover, we discuss how to reduce the computational effort of the iterative solver by adapting the size of the Krylov subspace. With classical perturbation results we prove upper bounds for the eigenvalue and the eigenfunction error. Under certain assumptions similar results are obtained for convection-diffusion problems. Following [9], we introduce functional perturbation results for PDE eigenvalue problems including the functional backward error and the functional condition number. These results are used to establish a combined a posteriori error estimator embodying the discretization and the approximation error. Based on perturbation results in the H1( )and H 1( )-norm derived in [65] and a standard residual a posteriori error estimator a balanced AFEM algorithm is proposed. The eigensolver stopping criterion is based on the equilibrating strategy, i.e., iterations proceed as long as the discrete part of the error estimator dominates the continuous part. A completely new approach combining the adaptive finite element method with the homotopy method is introduced to determine the particular eigenvalue of the convection-diffusion problem. The adaptive homotopy approach derived here emphasizes the need of the multi-way adaptation based on three different errors, the homotopy, the discretization and the iteration error. All our statements are illustrated with several numerical examples.

[1]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[2]  M. Vohralík,et al.  A POSTERIORI ERROR ESTIMATES INCLUDING ALGEBRAIC ERROR : COMPUTABLE UPPER BOUNDS AND STOPPING CRITERIA FOR ITERATIVE SOLVERS , 2008 .

[3]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[4]  Z. Strakos,et al.  On numerical stability in large scale linear algebraic computations , 2005 .

[5]  T. Y. Li,et al.  Solving eigenvalue problems of real nonsymmetric matrices with real homotopies , 1992 .

[6]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[7]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[8]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[9]  Tien-Yien Li,et al.  Homotopy algorithm for symmetric eigenvalue problems , 1989 .

[10]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[11]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[12]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[13]  Susanne C. Brenner,et al.  Chapter 4 Finite Element Methods , 2004 .

[14]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[15]  Louis Komzsik The Lanczos method - evolution and application , 2003, Software, environments, tools.

[16]  Ilse C. F. Ipsen,et al.  Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices , 1998 .

[17]  Carsten Carstensen,et al.  An adaptive homotopy approach for non-selfadjoint eigenvalue problems , 2011, Numerische Mathematik.

[18]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[19]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[20]  Richard B. Lehoucq,et al.  Uniform accuracy of eigenpairs from a shift-invert Lanczos method , 2005, SIAM J. Matrix Anal. Appl..

[21]  Françoise Chatelin The Influence of Nonnormality on Matrix Computations , 1993 .

[22]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[23]  Axel Ruhe The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems , 1983 .

[24]  C. Tretter Spectral Theory Of Block Operator Matrices And Applications , 2008 .

[25]  Stig Larsson,et al.  Partial differential equations with numerical methods , 2003, Texts in applied mathematics.

[26]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[27]  William Kahan,et al.  Some new bounds on perturbation of subspaces , 1969 .

[28]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[29]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[30]  Eduardo M. Garau,et al.  Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.

[31]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[32]  Mark S. Gockenbach,et al.  Understanding and implementing the finite element method , 1987 .

[33]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[34]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[35]  Gene H. Golub,et al.  Matrix computations , 1983 .

[36]  Carsten Carstensen,et al.  An Adaptive Finite Element Eigenvalue Solver of Quasi-Optimal Computational Complexity , 2009 .

[37]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[38]  H. Keller,et al.  Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem , 1997, SIAM J. Matrix Anal. Appl..

[39]  Thierry BraconnieryCERFACS Stopping Criteria for Eigensolvers , 1994 .

[40]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[41]  M. Chu A simple application of the homotopy method to symmetric eigenvalue problems , 1984 .

[42]  Christoph Ortner,et al.  Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.

[43]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[44]  M. Arioli,et al.  Stopping criteria for iterative methods:¶applications to PDE's , 2001 .

[45]  W. Kahan,et al.  Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .

[46]  Klaus Neymeyr,et al.  A posteriori error estimation for elliptic eigenproblems , 2002, Numer. Linear Algebra Appl..

[47]  Volker Mehrmann,et al.  Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..

[48]  Merico E. Argentati,et al.  Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates , 2001, SIAM J. Sci. Comput..

[49]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[50]  Andrew Knyazev,et al.  New estimates for Ritz vectors , 1997, Math. Comput..

[51]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[52]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[53]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[54]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[55]  M. Arioli,et al.  RAL-TR-2009-021 Convergence of inexact adaptive finite element solvers for elliptic problems , 2009 .

[56]  Tien-Yien Li,et al.  Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems , 1992 .

[57]  Carsten Carstensen,et al.  A Posteriori Error estimators for Non-Symmetric Eigenvalue Problems , 2009 .

[58]  Carsten Carstensen,et al.  Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .

[59]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[60]  Merico E. Argentati,et al.  Rayleigh-Ritz Majorization Error Bounds with Applications to FEM , 2009, SIAM J. Matrix Anal. Appl..

[61]  Khamron Mekchay,et al.  Convergence of Adaptive Finite Element Methods , 2005 .

[62]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[63]  C. Burstedde,et al.  ON THE NUMERICAL EVALUATION OF FRACTIONAL SOBOLEV NORMS , 2007 .

[64]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[65]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[66]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[67]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[68]  F. Chatelin Spectral approximation of linear operators , 2011 .

[69]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[70]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[71]  Aihui Zhou,et al.  Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..

[72]  Zhonggang Zeng,et al.  The Homotopy Continuation Algorithm for the Real Nonsymmetric Eigenproblem: Further Development and Implementation , 1999, SIAM J. Sci. Comput..

[73]  Françoise Chaitin-Chatelin,et al.  Lectures on finite precision computations , 1996, Software, environments, tools.

[74]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[75]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[76]  R. Bhatia Perturbation Bounds for Matrix Eigenvalues , 2007 .

[77]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[78]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[79]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[80]  Luka Grubisic,et al.  On estimators for eigenvalue/eigenvector approximations , 2009, Math. Comput..

[81]  B. Reddy,et al.  Introductory Functional Analysis , 1998 .

[82]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[83]  Merico E. Argentati,et al.  Bounds on Changes in Ritz Values for a Perturbed Invariant Subspace of a Hermitian Matrix , 2008, SIAM J. Matrix Anal. Appl..

[84]  加藤 敏夫 A short introduction to perturbation theory for linear operators , 1982 .

[85]  Andrew V. Knyazev,et al.  New A Priori FEM Error Estimates for Eigenvalues , 2006, SIAM J. Numer. Anal..

[86]  R. Rannacher Error Control in Finite Element Computations , 1999 .

[87]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[88]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[89]  Lloyd N. Trefethen,et al.  Computed eigenmodes of planar regions , 2005 .

[90]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[91]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[92]  Wolfgang Dahmen,et al.  Adaptive eigenvalue computation: complexity estimates , 2007, Numerische Mathematik.

[93]  S. Sauter,et al.  Finite Elements for Elliptic Eigenvalue Problems , 2008 .

[94]  Wen-Wei Lin,et al.  An application of the homotopy method to the generalised symmetric eigenvalue problem , 1988, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[95]  Merico E. Argentati,et al.  Majorization for Changes in Angles Between Subspaces, Ritz Values, and Graph Laplacian Spectra , 2006, SIAM J. Matrix Anal. Appl..

[96]  C. T. Fike,et al.  Norms and exclusion theorems , 1960 .

[97]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[98]  RICARDO H. NOCHETTO,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PDE , .

[99]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[100]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .