Inexact Adaptive Finite Element Methods for Elliptic PDE Eigenvalue Problems
暂无分享,去创建一个
[1] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[2] M. Vohralík,et al. A POSTERIORI ERROR ESTIMATES INCLUDING ALGEBRAIC ERROR : COMPUTABLE UPPER BOUNDS AND STOPPING CRITERIA FOR ITERATIVE SOLVERS , 2008 .
[3] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[4] Z. Strakos,et al. On numerical stability in large scale linear algebraic computations , 2005 .
[5] T. Y. Li,et al. Solving eigenvalue problems of real nonsymmetric matrices with real homotopies , 1992 .
[6] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[7] D. Sorensen,et al. 4. The Implicitly Restarted Arnoldi Method , 1998 .
[8] Carsten Carstensen,et al. An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.
[9] Tien-Yien Li,et al. Homotopy algorithm for symmetric eigenvalue problems , 1989 .
[10] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[11] Peter Deuflhard,et al. Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..
[12] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[13] Susanne C. Brenner,et al. Chapter 4 Finite Element Methods , 2004 .
[14] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[15] Louis Komzsik. The Lanczos method - evolution and application , 2003, Software, environments, tools.
[16] Ilse C. F. Ipsen,et al. Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices , 1998 .
[17] Carsten Carstensen,et al. An adaptive homotopy approach for non-selfadjoint eigenvalue problems , 2011, Numerische Mathematik.
[18] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[19] Carsten Carstensen,et al. Estimator competition for Poisson problems , 2010 .
[20] Richard B. Lehoucq,et al. Uniform accuracy of eigenpairs from a shift-invert Lanczos method , 2005, SIAM J. Matrix Anal. Appl..
[21] Françoise Chatelin. The Influence of Nonnormality on Matrix Computations , 1993 .
[22] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[23] Axel Ruhe. The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems , 1983 .
[24] C. Tretter. Spectral Theory Of Block Operator Matrices And Applications , 2008 .
[25] Stig Larsson,et al. Partial differential equations with numerical methods , 2003, Texts in applied mathematics.
[26] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[27] William Kahan,et al. Some new bounds on perturbation of subspaces , 1969 .
[28] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[29] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[30] Eduardo M. Garau,et al. Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.
[31] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[32] Mark S. Gockenbach,et al. Understanding and implementing the finite element method , 1987 .
[33] H. Weinberger. Variational Methods for Eigenvalue Approximation , 1974 .
[34] Axel Ruhe,et al. The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .
[35] Gene H. Golub,et al. Matrix computations , 1983 .
[36] Carsten Carstensen,et al. An Adaptive Finite Element Eigenvalue Solver of Quasi-Optimal Computational Complexity , 2009 .
[37] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[38] H. Keller,et al. Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem , 1997, SIAM J. Matrix Anal. Appl..
[39] Thierry BraconnieryCERFACS. Stopping Criteria for Eigensolvers , 1994 .
[40] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[41] M. Chu. A simple application of the homotopy method to symmetric eigenvalue problems , 1984 .
[42] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[43] Carsten Carstensen,et al. Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.
[44] M. Arioli,et al. Stopping criteria for iterative methods:¶applications to PDE's , 2001 .
[45] W. Kahan,et al. Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .
[46] Klaus Neymeyr,et al. A posteriori error estimation for elliptic eigenproblems , 2002, Numer. Linear Algebra Appl..
[47] Volker Mehrmann,et al. Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..
[48] Merico E. Argentati,et al. Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates , 2001, SIAM J. Sci. Comput..
[49] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[50] Andrew Knyazev,et al. New estimates for Ritz vectors , 1997, Math. Comput..
[51] Rolf Rannacher,et al. A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..
[52] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[53] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .
[54] A. C. Aitken. XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .
[55] M. Arioli,et al. RAL-TR-2009-021 Convergence of inexact adaptive finite element solvers for elliptic problems , 2009 .
[56] Tien-Yien Li,et al. Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems , 1992 .
[57] Carsten Carstensen,et al. A Posteriori Error estimators for Non-Symmetric Eigenvalue Problems , 2009 .
[58] Carsten Carstensen,et al. Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .
[59] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[60] Merico E. Argentati,et al. Rayleigh-Ritz Majorization Error Bounds with Applications to FEM , 2009, SIAM J. Matrix Anal. Appl..
[61] Khamron Mekchay,et al. Convergence of Adaptive Finite Element Methods , 2005 .
[62] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[63] C. Burstedde,et al. ON THE NUMERICAL EVALUATION OF FRACTIONAL SOBOLEV NORMS , 2007 .
[64] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[65] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[66] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[67] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[68] F. Chatelin. Spectral approximation of linear operators , 2011 .
[69] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[70] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[71] Aihui Zhou,et al. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..
[72] Zhonggang Zeng,et al. The Homotopy Continuation Algorithm for the Real Nonsymmetric Eigenproblem: Further Development and Implementation , 1999, SIAM J. Sci. Comput..
[73] Françoise Chaitin-Chatelin,et al. Lectures on finite precision computations , 1996, Software, environments, tools.
[74] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[75] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[76] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues , 2007 .
[77] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[78] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[79] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[80] Luka Grubisic,et al. On estimators for eigenvalue/eigenvector approximations , 2009, Math. Comput..
[81] B. Reddy,et al. Introductory Functional Analysis , 1998 .
[82] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[83] Merico E. Argentati,et al. Bounds on Changes in Ritz Values for a Perturbed Invariant Subspace of a Hermitian Matrix , 2008, SIAM J. Matrix Anal. Appl..
[84] 加藤 敏夫. A short introduction to perturbation theory for linear operators , 1982 .
[85] Andrew V. Knyazev,et al. New A Priori FEM Error Estimates for Eigenvalues , 2006, SIAM J. Numer. Anal..
[86] R. Rannacher. Error Control in Finite Element Computations , 1999 .
[87] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[88] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[89] Lloyd N. Trefethen,et al. Computed eigenmodes of planar regions , 2005 .
[90] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[91] P. G. Ciarlet,et al. Introduction to Numerical Linear Algebra and Optimisation , 1989 .
[92] Wolfgang Dahmen,et al. Adaptive eigenvalue computation: complexity estimates , 2007, Numerische Mathematik.
[93] S. Sauter,et al. Finite Elements for Elliptic Eigenvalue Problems , 2008 .
[94] Wen-Wei Lin,et al. An application of the homotopy method to the generalised symmetric eigenvalue problem , 1988, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[95] Merico E. Argentati,et al. Majorization for Changes in Angles Between Subspaces, Ritz Values, and Graph Laplacian Spectra , 2006, SIAM J. Matrix Anal. Appl..
[96] C. T. Fike,et al. Norms and exclusion theorems , 1960 .
[97] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[98] RICARDO H. NOCHETTO,et al. ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PDE , .
[99] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[100] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .