Flexible RFID Tag Metal Antenna on Paper‐Based Substrate by Inkjet Printing Technology

[1]  Wei Lin,et al.  Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics , 2011, Advanced materials.

[2]  U. Schubert,et al.  Ink‐jet Printing and Microwave Sintering of Conductive Silver Tracks , 2006 .

[3]  Weidong Zhou,et al.  High-performance green flexible electronics based on biodegradable cellulose nanofibril paper , 2015, Nature Communications.

[4]  Akshay M. Phulgirkar,et al.  Flexible, all-organic chemiresistor for detecting chemically aggressive vapors. , 2012, Journal of the American Chemical Society.

[5]  U. Weimar,et al.  Capacitive Humidity Sensors on Flexible RFID Labels , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[6]  Qingsong Xu,et al.  Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. , 2014, Nanoscale.

[7]  M. Striccoli Photolithography based on nanocrystals , 2017, Science.

[8]  George M. Whitesides,et al.  Omniphobic “RF Paper” Produced by Silanization of Paper with Fluoroalkyltrichlorosilanes , 2014 .

[9]  Aminy E. Ostfeld,et al.  Screen printed passive components for flexible power electronics , 2015, Scientific Reports.

[10]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[11]  Yi Zheng,et al.  Direct Desktop Printed-Circuits-on-Paper Flexible Electronics , 2013, Scientific Reports.

[12]  S. Fu,et al.  Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability. , 2014, Nanoscale.

[13]  Yu Chang,et al.  Selective adsorption of catalyst and copper plating for additive fabrication of conductive patterns and through-holes , 2015 .

[14]  Matiar M. R. Howlader,et al.  Inkjet Printing of a Highly Loaded Palladium Ink for Integrated, Low‐Cost pH Sensors , 2016 .

[15]  Qi Zhang,et al.  Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects , 2017 .

[16]  Xiaogang Han,et al.  Natural cellulose fiber as substrate for supercapacitor. , 2013, ACS nano.

[17]  Jianwen Zhao,et al.  Flexible CMOS-Like Circuits Based on Printed P-Type and N-Type Carbon Nanotube Thin-Film Transistors. , 2016, Small.

[18]  Z. Cui,et al.  Highly Air-Stable Electron-Transport Material for Ink-Jet-Printed OLEDs. , 2016, Chemistry.

[19]  H. Sirringhaus,et al.  Organic Diode Rectifiers Based on a High‐Performance Conjugated Polymer for a Near‐Field Energy‐Harvesting Circuit , 2017, Advanced materials.

[20]  Seonhee Jang,et al.  Sintering of inkjet printed copper nanoparticles for flexible electronics , 2010 .

[21]  R. Österbacka,et al.  Paper Electronics , 2011, Advanced materials.

[22]  Boris Murmann,et al.  Skin electronics from scalable fabrication of an intrinsically stretchable transistor array , 2018, Nature.

[23]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.

[24]  Li Yang,et al.  Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications , 2009, IEEE Antennas and Propagation Magazine.

[25]  Masayuki Kanehara,et al.  Room‐Temperature Printing of Organic Thin‐Film Transistors with π‐Junction Gold Nanoparticles , 2014 .

[26]  Q. Pei,et al.  A Water‐Based Silver‐Nanowire Screen‐Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin‐Film Transistors , 2016, Advanced materials.

[27]  V. Subramanian,et al.  Three‐Dimensional Inkjet‐Printed Interconnects using Functional Metallic Nanoparticle Inks , 2014 .

[28]  George Crabtree,et al.  Perspective: The energy-storage revolution , 2015, Nature.

[29]  A. Chiolerio,et al.  Inkjet Printed Negative Supercapacitors: Synthesis of Polyaniline‐Based Inks, Doping Agent Effect, and Advanced Electronic Devices Applications , 2014 .

[30]  K. Dandekar,et al.  2D titanium carbide (MXene) for wireless communication , 2018, Science Advances.

[31]  Francisco Molina-Lopez,et al.  Design and Development of Sensing RFID Tags on Flexible Foil Compatible With EPC Gen 2 , 2014, IEEE Sensors Journal.

[32]  J. Lewis,et al.  Pen‐on‐Paper Flexible Electronics , 2011, Advanced materials.

[33]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[34]  Qiuquan Guo,et al.  Fabrication of flexible copper-based electronics with high-resolution and high-conductivity on paper via inkjet printing , 2014 .

[35]  A. A. Bessonov,et al.  Nickel and copper conductive patterns fabricated by reactive inkjet printing combined with electroless plating , 2014 .

[36]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[37]  Li Yang,et al.  RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[38]  S. Palacin,et al.  Localized Ligand Induced Electroless Plating (LIEP) Process for the Fabrication of Copper Patterns Onto Flexible Polymer Substrates , 2011 .

[39]  Ravina Singh,et al.  Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things , 2017 .

[40]  M. Yuen,et al.  Water‐Based Isotropically Conductive Adhesives: Towards Green and Low‐Cost Flexible Electronics , 2011 .

[41]  George M Whitesides,et al.  Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper. , 2013, Lab on a chip.

[42]  A. Amassian,et al.  Radio Frequency Coplanar ZnO Schottky Nanodiodes Processed from Solution on Plastic Substrates. , 2016, Small.

[43]  P. Nikitin,et al.  Antenna design for UHF RFID tags: a review and a practical application , 2005, IEEE Transactions on Antennas and Propagation.