TiO2/black phosphorus heterojunction modified by Ag nanoparticles for efficient photoelectrochemical water splitting

[1]  Li Fu,et al.  Plasmon Au modified 3D-nanostructrue CoOx decorated hematite for highly efficient photoelectrochemical water splitting , 2021 .

[2]  Qizhao Wang,et al.  Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity , 2021 .

[3]  J. Niu,et al.  A novel vacancy-strengthened Z-scheme g-C3N4/Bp/MoS2 composite for super-efficient visible-light photocatalytic degradation of ciprofloxacin , 2021 .

[4]  J. Niu,et al.  Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin , 2021 .

[5]  Guangming Zeng,et al.  1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction , 2020 .

[6]  P. Chu,et al.  Photoelectrochemical Synthesis of Ammonia with Black Phosphorus , 2020, Advanced Functional Materials.

[7]  Qizhao Wang,et al.  Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation , 2020 .

[8]  Seungho Kim,et al.  Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches , 2020, Nature Nanotechnology.

[9]  J. Shim,et al.  Investigation of dopant and Ag plasmonic effect on α-Fe2O3 photoelectrode for photoelectrochemical water splitting activity , 2019, Applied Surface Science.

[10]  D. Ding,et al.  Facile preparation of Ti3+/Ni co-doped TiO2 nanotubes photoanode for efficient photoelectrochemical water splitting , 2019, Applied Surface Science.

[11]  Ho Won Jang,et al.  NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting , 2019, Applied Catalysis B: Environmental.

[12]  Shougang Chen,et al.  Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light , 2019, Applied Catalysis B: Environmental.

[13]  Yuan Yao,et al.  In situ synthesis of MoO3/Ag/TiO2 nanotube arrays for enhancement of visible-light photoelectrochemical performance , 2019, International Journal of Hydrogen Energy.

[14]  Alexander J. M. Miller,et al.  Stabilization of Ruthenium(II) Polypyridyl Chromophores on Mesoporous TiO2 Electrodes: Surface Reductive Electropolymerization and Silane Chemistry , 2019, ACS central science.

[15]  Young-Chun Park,et al.  Contact Angle Relaxation and Long-Lasting Hydrophilicity of Sputtered Anatase TiO2 Thin Films by Novel Quantitative XPS Analysis. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[16]  K. Tang,et al.  Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible−and NIR −light photoactivity , 2018, Applied Catalysis B: Environmental.

[17]  X. Lou,et al.  Construction of Heterostructured Fe2 O3 -TiO2 Microdumbbells for Photoelectrochemical Water Oxidation. , 2018, Angewandte Chemie.

[18]  H. Yamashita,et al.  Recent Progress on Black Phosphorus‐Based Materials for Photocatalytic Water Splitting , 2018, Small Methods.

[19]  Anders Hagfeldt,et al.  Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices , 2018, Nature Catalysis.

[20]  Lifang Qi,et al.  Noble Metal-Free RGO/TiO 2 composite nanofiber with enhanced photocatalytic H 2 -production performance , 2018 .

[21]  Yugang Sun,et al.  Multichannel Charge Transfer and Mechanistic Insight in Metal Decorated 2D-2D Bi2 WO6 -TiO2 Cascade with Enhanced Photocatalytic Performance. , 2017, Small.

[22]  Linsen Li,et al.  Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation , 2017 .

[23]  Yujie Liang,et al.  Surface plasmon-driven photoelectrochemical water splitting of TiO 2 nanowires decorated with Ag nanoparticles under visible light illumination , 2017 .

[24]  T. Andreu,et al.  Enhanced Photoelectrochemical Water Splitting of Hematite Multilayer Nanowires Photoanode with Tuning Surface State via Bottom-up Interfacial Engineering , 2017 .

[25]  Dongdong Liu,et al.  Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery. , 2017, Small.

[26]  R. Rold'an,et al.  A new bandgap tuning knob , 2017, Nature Photonics.

[27]  Yong-Wei Zhang,et al.  Few‐Layer Black Phosphorus Carbide Field‐Effect Transistor via Carbon Doping , 2017, Advanced materials.

[28]  R. M. Fernández-Domene,et al.  Should TiO2 nanostructures doped with Li+ be used as photoanodes for photoelectrochemical water splitting applications? , 2017 .

[29]  D. K. Sang,et al.  Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self‐Powered Photodetector , 2017 .

[30]  Yan Lin,et al.  In-situ grown of Ni2P nanoparticles on 2D black phosphorus as a novel hybrid catalyst for hydrogen evolution , 2017 .

[31]  W. Wang,et al.  Understanding the growth of black phosphorus crystals , 2016 .

[32]  Tibor Grasser,et al.  Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. , 2016, ACS nano.

[33]  Gerald J Meyer,et al.  Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. , 2016, Journal of the American Chemical Society.

[34]  J. Augustynski,et al.  Highly Efficient and Stable Solar Water Splitting at (Na)WO3 Photoanodes in Acidic Electrolyte Assisted by Non‐Noble Metal Oxygen Evolution Catalyst , 2016 .

[35]  Hua Tang,et al.  Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity , 2016 .

[36]  Zhengu Chen,et al.  Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting , 2016 .

[37]  Mohammad Ziaur Rahman,et al.  2D phosphorene as a water splitting photocatalyst: fundamentals to applications , 2016 .

[38]  Yuegang Zhang,et al.  Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production , 2015 .

[39]  Jun Wang,et al.  Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics , 2015, Nature Communications.

[40]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[41]  Gengfeng Zheng,et al.  WO₃ nanoflakes for enhanced photoelectrochemical conversion. , 2014, ACS nano.

[42]  R. Ahuja,et al.  Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst , 2014, 1410.7123.

[43]  S. Haigh,et al.  Production of few-layer phosphorene by liquid exfoliation of black phosphorus. , 2014, Chemical communications.

[44]  Jun Guo,et al.  2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting. , 2014, ACS applied materials & interfaces.

[45]  M. K. Brennaman,et al.  Stabilization of ruthenium(II) polypyridyl chromophores on nanoparticle metal-oxide electrodes in water by hydrophobic PMMA overlayers. , 2014, Journal of the American Chemical Society.

[46]  Junwang Tang,et al.  Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. , 2014, Journal of the American Chemical Society.

[47]  Yuanbing Mao,et al.  Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance. , 2014, Nanoscale.

[48]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[49]  A. Mohamed,et al.  Facet-dependent photocatalytic properties of TiO(2) -based composites for energy conversion and environmental remediation. , 2014, ChemSusChem.

[50]  Gengfeng Zheng,et al.  Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. , 2013, ACS nano.

[51]  Yun Wang,et al.  Visible light active pure rutile TiO2 photoanodes with 100% exposed pyramid-shaped (111) surfaces , 2012, Nano Research.

[52]  D. Gamelin,et al.  Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. , 2011, Journal of the American Chemical Society.

[53]  L. Fang,et al.  TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells , 2011 .

[54]  R. F. Howe,et al.  The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO₂ nanoparticles. , 2011, Nature chemistry.

[55]  P. Adelhelm,et al.  Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. , 2010, ChemSusChem.

[56]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[57]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[58]  T. Nilges,et al.  A fast low-pressure transport route to large black phosphorus single crystals , 2008 .

[59]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[60]  Jing Chen,et al.  Scalable Clean Exfoliation of High‐Quality Few‐Layer Black Phosphorus for a Flexible Lithium Ion Battery , 2016, Advanced materials.

[61]  Jason Graetz,et al.  New approaches to hydrogen storage. , 2009, Chemical Society reviews.