Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model

Substantial progress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. The multiplier diodes are often simulated using a simple Schottky junction model plus a series resistance, Rs, because of the model's simplicity and ease of use in commercial harmonic balance simulators. The DC series resistance value is useable for Rs at low frequencies, but at high frequencies the Rs must be increased to match the measured RF performance. The junction properties are determined from forward I-V measurement.We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior. These include time-dependent velocity saturation, carrier inertia and shunt capacitance in the undepleted active layer, tunneling through the Schottky barrier and heating of the junction at high powers. The model is calibrated using ensemble Monte Carlo calculations of material parameters, but otherwise no parameters are fitted other than to DC I-V measurements. The program can be used to optimize the doping concentration and diode dimensions for any multiplier, based on its frequency, input power and operation temperature. Optimizations are demonstrated for 200, 400 and 800 GHz doublers, and comparison between calculation and measurement will be shown. The match between them will be seen to be quite close. Further, the measurements include new low temperature measurements of an 800 GHz chain yielding a high 2 mW peak output power.

[1]  Alain Maestrini,et al.  A high-power wideband cryogenic 200 GHz schottky substrateless multiplier: modeling, design and results , 2001 .

[2]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[3]  Erich Schlecht,et al.  Design Considerations for Heavily-Doped Cryogenic Schottky Diode Varactor Multipliers , 2001 .

[4]  N. D. Whyborn,et al.  Toe Hifi Heterodyne Instrument for First: Capabilities and Performance , 1997 .

[5]  A. Adams,et al.  Reassessment of ionized impurity scattering and compensation in GaAs and InP including correlation scattering , 1987 .

[6]  Electron-electron interactions, coupled plasmon-phonon modes, and mobility in n-type GaAs. , 1995, Physical review. B, Condensed matter.

[7]  Viktor Krozer,et al.  New approach to the design and the fabrication of THz Schottky barrier diodes , 1993 .

[8]  Peter H. Siegel,et al.  Improved millimeter-wave mixer performance analysis using a drift diffusion capacitance model , 1991, 1991 IEEE MTT-S International Microwave Symposium Digest.

[10]  Hans L. Hartnagel,et al.  Pulsed stress reliability investigations of schottky diodes and HBTS , 1996 .

[11]  Göran Pilbratt,et al.  The FIRST Mission , 2000 .

[12]  J.T. Louhi The capacitance of a small circular Schottky diode for submillimeter wavelengths , 1994, IEEE Microwave and Guided Wave Letters.

[13]  I. Mehdi,et al.  200, 400 and 800 GHz Schottky diode "substrateless" multipliers: design and results , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[14]  Neal R. Erickson Diode frequency multipliers for terahertz local-oscillator applications , 1998, Astronomical Telescopes and Instrumentation.

[15]  G. E. Stillman,et al.  Hall coefficient factor for polar mode scattering in n-type GaAs☆ , 1970 .

[16]  I. Mehdi,et al.  Improved millimeter-wave mixer performance analysis at cryogenic temperatures , 1991, IEEE Microwave and Guided Wave Letters.

[17]  Thomas W. Crowe,et al.  GaAs Schottky barrier mixer diodes for the frequency range 1–10 THz , 1989 .

[18]  I. Mehdi,et al.  A broadband 800 GHz Schottky balanced doubler , 2002, IEEE Microwave and Wireless Components Letters.

[19]  Joe C. Campbell,et al.  GaN avalanche photodiodes , 2000 .

[20]  J. G. Ruch,et al.  Temperature Dependence of the Transport Properties of Gallium Arsenide Determined by a Monte Carlo Method , 1970 .

[21]  D. L. Rode,et al.  Chapter 1 Low-Field Electron Transport , 1975 .

[22]  W. Lui,et al.  Exact solution of the Schrodinger equation across an arbitrary one‐dimensional piecewise‐linear potential barrier , 1986 .

[23]  I. Mehdi,et al.  Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[24]  Antti V. Räisänen,et al.  On the modeling and optimization of Schottky varactor frequency multipliers at submillimeter wavelengths , 1995 .

[25]  Peter H. Siegel,et al.  Topics in the optimization of millimeter-wave mixers , 1984 .

[27]  Anthony R. Kerr,et al.  A Technique for Determining the Local Oscillator Waveforms in a Microwave Mixer , 1975 .

[28]  T.W. Crowe,et al.  An 80/160 GHz broadband, fixed-tuned, balanced frequency doubler , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[29]  Stephen A. Maas,et al.  Nonlinear microwave circuits , 1988 .

[30]  D. Rode,et al.  Electron Transport in GaAs , 1971 .

[31]  F. Helmich SCIENTIFIC DRIVERS FOR FUTURE HIGH-RESOLUTION FAR-INFRARED SPECTROSCOPY IN SPACE , 1998 .

[32]  P.H. Siegel,et al.  Progress towards the realization of MMIC technology at submillimeter wavelengths: A frequency multiplier to 320 GHz , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[33]  R. J. Mattauch,et al.  Numerical simulation of the current-voltage characteristics of heteroepitaxial Schottky-barrier diodes , 1993 .

[34]  D. M. Szmyd,et al.  Heavily doped GaAs:Se. II. Electron mobility , 1990 .

[35]  Alain Maestrini,et al.  Cryogenic Operation of GaAs Based Multiplier Chains to 400 GHz , 2000 .

[36]  Peter H. Siegel,et al.  Development of millimeter- and submillimeter-wave local oscillator circuits for a space telescope , 1999, Optics & Photonics.

[37]  Neal R. Erickson,et al.  A high-power millimeter-wave frequency doubler using a planar diode array , 1993 .

[38]  J. Chramiec,et al.  Microwave and Millimeter-Wave Diode Frequency Multipliers , 1995 .

[39]  Jack R. East,et al.  Current saturation in submillimeter-wave varactors , 1992 .