The Network Nullspace Property for Compressed Sensing of Big Data Over Networks

We present a novel condition, which we term the network nullspace property, which ensures accurate recovery of graph signals representing massive network-structured datasets from few signal values. The network nullspace property couples the cluster structure of the underlying network-structure with the geometry of the sampling set. Our results can be used to design efficient sampling strategies based on the network topology.

[1]  Yonina C. Eldar Sampling Theory: Beyond Bandlimited Systems , 2015 .

[2]  Shang-Hua Teng,et al.  A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning , 2008, SIAM J. Comput..

[3]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[4]  Jelena Kovacevic,et al.  Representations of piecewise smooth signals on graphs , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Alessandro Rinaldo,et al.  Sparsistency of the Edge Lasso over Graphs , 2012, AISTATS.

[6]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[7]  Alfred O. Hero,et al.  Semi-Supervised Learning via Sparse Label Propagation , 2016 .

[8]  Santiago Segarra,et al.  Sampling of Graph Signals With Successive Local Aggregations , 2015, IEEE Transactions on Signal Processing.

[9]  Alexander J. Smola,et al.  Trend Filtering on Graphs , 2014, J. Mach. Learn. Res..

[10]  Alexander Jung,et al.  Random walk sampling for big data over networks , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[11]  Alexander Jung,et al.  Efficient graph signal recovery over big networks , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[12]  Holger Rauhut,et al.  Analysis ℓ1-recovery with Frames and Gaussian Measurements , 2015, ArXiv.

[13]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[14]  José M. F. Moura,et al.  Big Data over Networks , 2016 .

[15]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[16]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[17]  Alexander Jung,et al.  When Is Network Lasso Accurate? , 2017, Front. Appl. Math. Stat..

[18]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[19]  Leonidas J. Guibas,et al.  Wireless sensor networks - an information processing approach , 2004, The Morgan Kaufmann series in networking.

[20]  Alexander Jung,et al.  Recovery conditions and sampling strategies for network Lasso , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[21]  Jelena Kovacevic,et al.  Discrete Signal Processing on Graphs: Sampling Theory , 2015, IEEE Transactions on Signal Processing.

[22]  Alexander Jung,et al.  The Network Nullspace Property for Compressed Sensing of Big Data Over Networks , 2018, ICASSP.

[23]  Yunzhang Zhu An Augmented ADMM Algorithm With Application to the Generalized Lasso Problem , 2017 .

[24]  José M. F. Moura,et al.  Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive data sets with irregular structure , 2014, IEEE Signal Processing Magazine.

[25]  Maryia Kabanava,et al.  Cosparsity in Compressed Sensing , 2015 .

[26]  Alexander Jung,et al.  Scalable graph signal recovery for big data over networks , 2016, 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[27]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[28]  Éva Tardos,et al.  Algorithm design , 2005 .

[29]  Yonina C. Eldar,et al.  The network nullspace property for compressed sensing over networks , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).