High-order local dynamic programming

We describe a new local dynamic programming algorithm for solving stochastic continuous Optimal Control problems. We use cubature integration to both propagate the state distribution and perform the Bellman backup. The algorithm can approximate the local policy and cost-to-go with arbitrary function bases. We compare the classic quadratic cost-to-go/linear-feedback controller to a cubic cost-to-go/quadratic policy controller on a 10-dimensional simulated swimming robot, and find that the higher order approximation yields a more general policy with a larger basin of attraction.