Query-Driven Video Event Processing for the Internet of Multimedia Things

This work was supported with the financial support of the Science Foundation Ireland (SFI) grant SFI/12/RC/2289_P2.

[1]  Michael Stonebraker,et al.  The 8 requirements of real-time stream processing , 2005, SGMD.

[2]  Geoffrey M. Voelker,et al.  Sprocket: A Serverless Video Processing Framework , 2018, SoCC.

[3]  Paramvir Bahl,et al.  Live Video Analytics at Scale with Approximation and Delay-Tolerance , 2017, NSDI.

[4]  Edward Curry,et al.  VEKG: Video Event Knowledge Graph to Represent Video Streams for Complex Event Pattern Matching , 2019, 2019 First International Conference on Graph Computing (GC).

[5]  Waqar Mahmood,et al.  Internet of multimedia things: Vision and challenges , 2015, Ad Hoc Networks.

[6]  Daren Chao,et al.  SVQ++: Querying for Object Interactions in Video Streams , 2020, SIGMOD Conference.

[7]  Edward Curry,et al.  VID-WIN: Fast Video Event Matching With Query-Aware Windowing at the Edge for the Internet of Multimedia Things , 2021, IEEE Internet of Things Journal.

[8]  Peter R. Pietzuch,et al.  Distributed event-based systems , 2006 .

[9]  Peter Bailis,et al.  BlazeIt: Optimizing Declarative Aggregation and Limit Queries for Neural Network-Based Video Analytics , 2018, Proc. VLDB Endow..

[10]  S. H. Mortazavi,et al.  VideoPipe: Building Video Stream Processing Pipelines at the Edge , 2019, Middleware Industry.

[11]  Aakanksha Chowdhery,et al.  Optasia: A Relational Platform for Efficient Large-Scale Video Analytics , 2016, SoCC.

[12]  Edward Curry,et al.  VidCEP: Complex Event Processing Framework to Detect Spatiotemporal Patterns in Video Streams , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[13]  Zhuo Chen,et al.  Bandwidth-Efficient Live Video Analytics for Drones Via Edge Computing , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[14]  Matei Zaharia,et al.  NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale , 2017, Proc. VLDB Endow..

[15]  Edward Curry,et al.  Knowledge Graph Driven Approach to Represent Video Streams for Spatiotemporal Event Pattern Matching in Complex Event Processing , 2020, Int. J. Semantic Comput..

[16]  E. Curry,et al.  Cloud-Edge Microservice Architecture for DNN-based Distributed Multimedia Event Processing , 2020, ESOCC Workshops.

[17]  Piyush Yadav High-performance complex event processing framework to detect event patterns over video streams , 2019, Middleware Doctoral Symposium.

[18]  Paramvir Bahl,et al.  Focus: Querying Large Video Datasets with Low Latency and Low Cost , 2018, OSDI.