Thermodynamics of the General Diffusion Process: Time-Reversibility and Entropy Production

We introduce an axiomatic thermodynamic theory for the general diffusion process and prove a theorem concerning entropy and irreversibility: the equivalence among time-reversibility, zero entropy production, symmetricity of the stationary diffusion process, and a potential condition.

[1]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[2]  William Feller,et al.  The General Diffusion Operator and Positivity Preserving Semi-Groups in One Dimension , 1954 .

[3]  Edward Nelson An existence theorem for second order parabolic equations , 1958 .

[4]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[5]  H. Haken,et al.  Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium , 1971 .

[6]  S. Smale On the mathematical foundations of electrical circuit theory , 1972 .

[7]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[8]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[9]  M. Fukushima Dirichlet forms and Markov processes , 1980 .

[10]  Qian Minping,et al.  Circulation for recurrent markov chains , 1982 .

[11]  M. Ian THE ENTROPY PRODUCTION AND IRREVERSIBILITY OF MARKOV PROCESSES , 1985 .

[12]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[13]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[14]  Maozheng Guo,et al.  The entropy production and circulation of diffusion processes on manifolds , 1997 .

[15]  D. Ruelle Positivity of entropy production in the presence of a random thermostat , 1997 .

[16]  Jorge Kurchan,et al.  Fluctuation theorem for stochastic dynamics , 1998 .

[17]  Hong Qian,et al.  Vector Field Formalism and Analysis for a Class of Thermal Ratchets , 1998 .

[18]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[19]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[20]  A B Kolomeisky,et al.  The force exerted by a molecular motor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  The Fluctuation Theorem as a Gibbs Property , 1998, math-ph/9812015.

[22]  Qian Min,et al.  The Entropy Production of Diffusion Processes on Manifolds and Its Circulation Decompositions , 1999 .

[23]  H. Qian,et al.  Single-particle tracking: Brownian dynamics of viscoelastic materials. , 2000, Biophysical journal.

[24]  C. Maes,et al.  On the definition of entropy production, via examples , 2000 .

[25]  Hong Qian,et al.  The mathematical theory of molecular motor movement and chemomechanical energy transduction , 2000, cond-mat/0106302.

[26]  No Current Without Heat , 2001, cond-mat/0111281.

[27]  M. Qian,et al.  Entropy Production and Information Gain¶in Axiom-A Systems , 2000 .

[28]  Hong Qian Mathematical formalism for isothermal linear irreversibility , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  H Qian Relative entropy: free energy associated with equilibrium fluctuations and nonequilibrium deviations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  H. Qian Nonequilibrium steady-state circulation and heat dissipation functional. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  C. Landim,et al.  Fluctuations in stationary nonequilibrium states of irreversible processes. , 2001, Physical review letters.

[32]  H. Qian Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-energy compensation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  H. Qian Equations for stochastic macromolecular mechanics of single proteins: Equilibrium fluctuations, transient kinetics, and nonequilibrium steady-state , 2000, physics/0007017.