Active damping control using optimal Integral Force Feedback

This article shows an improvement to Integral Force Feedback (IFF) for active damping control of precision mechanisms. The benefits of IFF include robustness, guaranteed stability and simplicity. However, the damping performance depends on the stiffness of the system; hence, some systems cannot be adequately controlled. In this article, an extension to the classical integral force feedback control scheme is proposed. The new method achieves arbitrary damping for any mechanical system by introducing a feed-through term in the system.

[1]  Ludovic H. Vaillon,et al.  Passive and active microvibration control for very high pointing accuracy space systems , 1997 .

[2]  S.O.R. Moheimani,et al.  Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms , 2009, IEEE Transactions on Nanotechnology.

[3]  André Preumont,et al.  Active damping by a local force feedback with piezoelectric actuators , 1991 .

[4]  André Preumont,et al.  Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems , 2006 .

[5]  A. Preumont,et al.  The damping of a truss structure with a piezoelectric transducer , 2008 .

[6]  Yuen Kuan Yong,et al.  Piezoelectric Actuators With Integrated High-Voltage Power Electronics , 2015, IEEE/ASME Transactions on Mechatronics.

[7]  A.J. Fleming Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control , 2010, IEEE/ASME Transactions on Mechatronics.

[8]  S. O. Reza Moheimani,et al.  Integral resonant control of collocated smart structures , 2007 .

[9]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[10]  A J Fleming,et al.  Passive shunt damping of a piezoelectric stack nanopositioner , 2010, Proceedings of the 2010 American Control Conference.

[11]  B. Bhikkaji,et al.  Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning , 2008, IEEE/ASME Transactions on Mechatronics.

[12]  A. Fleming,et al.  Bridging the gap between conventional and video-speed scanning probe microscopes. , 2010, Ultramicroscopy.

[13]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[14]  Sumeet S Aphale,et al.  A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages , 2010, IEEE Transactions on Nanotechnology.

[15]  S. O. Reza Moheimani,et al.  Optimization and implementation of multimode piezoelectric shunt damping systems , 2002 .

[16]  Andrew J. Fleming,et al.  Design, Modeling and Control of Nanopositioning Systems , 2014 .

[17]  Victor Giurgiutiu,et al.  Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control , 2000 .

[18]  Andrew J. Fleming,et al.  High‐speed serial‐kinematic SPM scanner: design and drive considerations , 2009 .

[19]  S. O. Reza Moheimani,et al.  A Self Servo Writing Scheme for a MEMS Storage Device with Sub-nanometer Precision , 2008 .

[20]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[21]  K.K. Leang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.090 HIGH-SPEED SERIAL-KINEMATIC SPM SCANNER: DESIGN AND DRIVE CONSIDERATIONS , 2022 .

[22]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1987 .

[23]  Alexander Lanzon,et al.  Feedback Control of Negative-Imaginary Systems , 2010, IEEE Control Systems.

[24]  Andrew J. Fleming,et al.  Integrated strain and force feedback for high-performance control of piezoelectric actuators , 2010 .

[25]  N. Jalili,et al.  A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences , 2004 .

[26]  Antoine Ferreira,et al.  Virtual reality and haptics for nanorobotics , 2006, IEEE Robotics & Automation Magazine.