End-to-end alignment of nanorods in thin films.

A simple approach to obtain end-to-end assemblies of nanorods over macroscopic distances in thin films is described. Nanorods with aspect ratio of 8-12 can be aligned parallel to the surface in an end-to-end fashion by imposing geometric confinement via block copolymer-based supramolecular assemblies. Successful control over the orientation and location of nanorods requires a balance of particle-particle interactions and entropy associated with geometric confinement from the supramolecular framework, as well as consideration of the kinetics of assembly.

[1]  Jintao Zhu,et al.  Ordering of Gold Nanorods in Confined Spaces by Directed Assembly , 2013 .

[2]  Xu-Ming Xie,et al.  Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: Structures, properties and external field effects , 2013 .

[3]  A. Alivisatos,et al.  Size-dependent assemblies of nanoparticle mixtures in thin films. , 2013, Journal of the American Chemical Society.

[4]  R. Vaia,et al.  Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. , 2012, ACS nano.

[5]  P. Ercius,et al.  Nanoparticle assemblies in thin films of supramolecular nanocomposites. , 2012, Nano letters.

[6]  Liguang Xu,et al.  Gold nanorod assembly based approach to toxin detection by SERS , 2012 .

[7]  P. Ercius,et al.  Direct nanorod assembly using block copolymer-based supramolecules. , 2012, Nano letters.

[8]  E. Kramer,et al.  Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding. , 2011, Journal of the American Chemical Society.

[9]  Qiqing Zhang,et al.  Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods , 2011 .

[10]  R. Mezzenga,et al.  Macroscopic Alignment of Lyotropic Liquid Crystals Using Magnetic Nanoparticles , 2011, Advanced materials.

[11]  R. Hayward,et al.  Kinetically trapped co-continuous polymer morphologies through intraphase gelation of nanoparticles. , 2011, Nano letters.

[12]  R. Composto,et al.  Nanorod self-assembly for tuning optical absorption. , 2010, ACS nano.

[13]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[14]  Menachem Elimelech,et al.  Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor. , 2010, ACS nano.

[15]  P. Schurtenberger,et al.  Mutual Alignment of Block Copolymer−Magnetic Nanoparticle Composites in a Magnetic Field , 2010 .

[16]  Jinyoung Chun,et al.  Various Synthetic Methods for One‐Dimensional Semiconductor Nanowires/Nanorods and Their Applications in Photovoltaic Devices , 2010 .

[17]  Liguang Xu,et al.  Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. , 2010, Angewandte Chemie.

[18]  U. Banin,et al.  Hierarchical Surface Patterns of Nanorods Obtained by Co‐Assembly with Block Copolymers in Ultrathin Films , 2010, Advanced materials.

[19]  Xiaoming Sun,et al.  Cerium vanadate nanorod arrays from ionic chelator-mediated self-assembly. , 2010, Angewandte Chemie.

[20]  A Paul Alivisatos,et al.  Device-scale perpendicular alignment of colloidal nanorods. , 2010, Nano letters.

[21]  S. Ghosh,et al.  Self-assembly of Janus nanoparticles in diblock copolymers. , 2010, ACS nano.

[22]  Eric Brown,et al.  Generality of shear thickening in dense suspensions. , 2009, Nature materials.

[23]  E. Kumacheva,et al.  Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. , 2010, Nature nanotechnology.

[24]  Moniraj Ghosh,et al.  Oriented Assembly of Metamaterials , 2009, Science.

[25]  E. Kumacheva,et al.  Evolution of Self‐Assembled Structures of Polymer‐Terminated Gold Nanorods in Selective Solvents , 2008 .

[26]  P. Král,et al.  Modeling the self-assembly of colloidal nanorod superlattices. , 2008, Nano letters.

[27]  Younan Xia,et al.  Controlling the Assembly of Silver Nanocubes through Selective Functionalization of Their Faces , 2008 .

[28]  R. Composto,et al.  Two-dimensional confinement of nanorods in block copolymer domains. , 2007, Nano letters.

[29]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[30]  O. Ikkala,et al.  Self-Assembled Structures in Diblock Copolymers with Hydrogen-Bonded Amphiphilic Plasticizing Compounds , 2006 .

[31]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[32]  Todd Emrick,et al.  "Self-corralling" nanorods under an applied electric field. , 2006, Nano letters.

[33]  Ali Ghezelbash,et al.  Self-assembled stripe patterns of CdS nanorods. , 2006, Nano letters.

[34]  Haitao Liu,et al.  Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. , 2006, Nano letters.

[35]  T. Emrick,et al.  Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. , 2006, Journal of the American Chemical Society.

[36]  C. J. Murphy,et al.  Alignment of Gold Nanorods in Polymer Composites and on Polymer Surfaces , 2005 .

[37]  E. Thomas,et al.  Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials , 2005, Advanced materials.

[38]  R. J. Composto,et al.  Mobile nanoparticles and their effect on phase separation dynamics in thin-film polymer blends , 2004 .

[39]  Prashant V. Kamat,et al.  Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods , 2004 .

[40]  Anna C. Balazs,et al.  Predicting the Mechanical and Electrical Properties of Nanocomposites Formed from Polymer Blends and Nanorods , 2004 .

[41]  Deliang Chen,et al.  Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process , 2004 .

[42]  A. P. Alivisatos,et al.  Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. , 2004, The Journal of chemical physics.

[43]  Eric J. Amis,et al.  Influence of Layered Silicates on the Phase-Separated Morphology of PS−PVME Blends , 2003 .

[44]  Liang-shi Li,et al.  Semiconductor Nanorod Liquid Crystals and Their Assembly on a Substrate , 2003 .

[45]  Liberato Manna,et al.  Semiconductor Nanorod Liquid Crystals , 2002 .

[46]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[47]  Mostafa A. El-Sayed,et al.  Self-Assembly of Gold Nanorods , 2000 .

[48]  Balazs,et al.  Forming supramolecular networks from nanoscale rods in binary, phase-separating mixtures , 2000, Science.

[49]  E. Thomas,et al.  Supramolecular Routes to Hierarchical Structures: Comb-Coil Diblock Copolymers Organized with Two Length Scales , 1999 .