Quantum Blockchain using entanglement in time

We propose a conceptual design for a quantum blockchain. Our method involves encoding the blockchain into a temporal GHZ (Greenberger-Horne-Zeilinger) state of photons that do not simultaneously coexist. It is shown that the entanglement in time, as opposed to an entanglement in space, provides the crucial quantum advantage. All the subcomponents of this system have already been shown to be experimentally realized. Furthermore, our encoding procedure can be interpreted as nonclassically influencing the past.

[1]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[2]  Satoshi Nakamoto Bitcoin : A Peer-to-Peer Electronic Cash System , 2009 .

[3]  David MacMahon,et al.  Quantum Computing Explained , 2008 .

[4]  Jeremy Clark,et al.  Bitcoin’s Academic Pedigree , 2017, ACM Queue.

[5]  Jonathan Jogenfors,et al.  Quantum Bitcoin: An Anonymous and Distributed Currency Secured by the No-Cloning Theorem of Quantum Mechanics , 2016, ArXiv.

[6]  Alexander Vasiliev,et al.  Quantum-Assisted Blockchain , 2018, Lobachevskii Journal of Mathematics.

[7]  Davide Castelvecchi,et al.  The quantum internet has arrived (and it hasn’t) , 2018, Nature.

[8]  Blake R. Johnson,et al.  First quantum computers need smart software , 2017, Nature.

[9]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[10]  Andrew G. White,et al.  Multi-time quantum correlations with no spatial analog , 2018, npj Quantum Information.

[11]  Christian Majenz,et al.  Information–theoretic implications of quantum causal structures , 2014, Nature Communications.

[12]  H. Eisenberg,et al.  Entanglement swapping between photons that have never coexisted. , 2012, Physical review letters.

[13]  Andrew G. White,et al.  Experimental test of nonlocal causality , 2016, Science Advances.

[14]  Marko Vukolic,et al.  The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication , 2015, iNetSeC.

[15]  Seth Lloyd,et al.  Quantum mechanics of time travel through post-selected teleportation , 2010, 1007.2615.

[16]  P. Horodecki,et al.  Entangled histories versus the two-state-vector formalism: Towards a better understanding of quantum temporal correlations , 2018, Physical Review A.

[17]  Goutam Paul,et al.  Quantum to classical one-way function and its applications in quantum money authentication , 2018, Quantum Inf. Process..

[18]  Kazuki Ikeda,et al.  qBitcoin: A Peer-to-Peer Quantum Cash System , 2017, Advances in Intelligent Systems and Computing.

[19]  H. Eisenberg,et al.  Resource efficient source of multiphoton polarization entanglement. , 2012, Physical review letters.

[20]  Č. Brukner,et al.  Quantum Entanglement in Time , 2004, quant-ph/0402127.

[21]  Alexander Ling,et al.  Progress in satellite quantum key distribution , 2017, 1707.03613.

[22]  Jan Hendrik Witte,et al.  The Blockchain: A Gentle Four Page Introduction , 2016, ArXiv.

[23]  N. Berloff,et al.  Blockchain platform with proof-of-work based on analog Hamiltonian optimisers , 2018, 1802.10091.

[24]  T. Ralph,et al.  Entanglement between the future and the past in the quantum vacuum. , 2010, Physical review letters.

[25]  Fabio Sciarrino,et al.  Experimental investigation on the geometry of GHZ states , 2017, Scientific Reports.

[26]  Timothy C. Ralph,et al.  Extraction of timelike entanglement from the quantum vacuum , 2011, 1101.2565.

[27]  C. Sabín,et al.  Extracting past-future vacuum correlations using circuit QED. , 2012, Physical review letters.

[28]  Hawking,et al.  Chronology protection conjecture. , 1992, Physical review. D, Particles and fields.

[29]  Seth Lloyd,et al.  Closed timelike curves via postselection: theory and experimental test of consistency. , 2010, Physical review letters.

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  Valentina Baccetti,et al.  Testing the effects of gravity and motion on quantum entanglement in space-based experiments , 2013, New Journal of Physics.

[32]  David Edward Bruschi,et al.  Spacetime effects on satellite-based quantum communications , 2013, 1309.3088.

[33]  Davide Castelvecchi,et al.  Quantum computers ready to leap out of the lab in 2017 , 2017, Nature.

[34]  Yehuda Lindell,et al.  Introduction to Modern Cryptography , 2004 .

[35]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[37]  Vincent Gramoli,et al.  From blockchain consensus back to Byzantine consensus , 2017, Future Gener. Comput. Syst..

[38]  Troy Lee,et al.  Quantum Attacks on Bitcoin, and How to Protect Against Them , 2017, Ledger.

[39]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[40]  Peter J. Riggs,et al.  QUANTUM CAUSALITY , 2010 .

[41]  S. Popescu,et al.  Multiple-Time States and Multiple-Time Measurements In Quantum Mechanics , 2007, 0712.0320.

[42]  From wormhole to time machine: Remarks on Hawking's chronology protection conjecture. , 1992, Physical review. D, Particles and fields.

[43]  Matt Visser The quantum physics of chronology protection , 2002 .

[44]  Tim Byrnes,et al.  Bitcoin and quantum computing , 2017, ArXiv.

[45]  Marko Vukolic,et al.  Blockchain Consensus Protocols in the Wild , 2017, DISC.

[46]  Sunny King,et al.  PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake , 2012 .

[47]  E. O. Kiktenko,et al.  Quantum-secured blockchain , 2017, Quantum Science and Technology.

[48]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[49]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[50]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[51]  M. S. Tame,et al.  Experimental verification of multipartite entanglement in quantum networks , 2016, Nature Communications.