Spatial Super-resolution and Gray Level Super-quantization

階調解像との対比から,超空間解像技術と呼んできた が,単に超解像と呼ばれることも多い.そのため,本節で は,超空間解像技術を超解像と呼ぶことにする.超解像と は入力画像に含まれていない細部を復元し,入力画像より も解像度の高い高解像度画像を出力する技術である. 単純な画像補間を利用しても画素数の多い高解像度画像を 生成することは可能であるが,標本化定理を超える空間周 波数の情報は復元できない.逆に言えば,標本化定理を超 える空間周波数の情報を復元することが超解像の特徴であ る.標本化定理が述べているとおり,入力画像一枚のみか らは,標本化定理を超える空間周波数の情報を復元するこ とはできない.そこで,複数枚超解像と呼ばれる方法では 複数枚の入力画像を利用し高解像度画像が生成される.ま た,なんらかの事例データを利用する超解像技術もあり, 事例型超解像と呼ばれる.複数枚超解像と事例型超解像に ついて,それぞれ解説する. 2.1 複数枚超解像 図 1に示すように,複数枚超解像は位置合わせ処理と 再構成処理から構成される.複数枚超解像では,画素単位 以下の位置ずれを利用して,高解像度画像を再構成する. もし,正確に半画素ずつ位置ずれのある 4枚の入力画像が 得られていれば,単純に合成することにより,簡単に縦横 2 倍の高解像度画像が得られる.複数枚超解像の基本原理 はこのように理解できるが,実際の複数の入力画像の位置 ずれは未知であり,入力画像から位置ずれ量を推定する必 要がある. また,入力画像間の位置ずれ量が既知であったとして も,高解像度画像を生成するために必要なすべての画素位

[1]  M. Abdullah-Al-Wadud,et al.  A Dynamic Histogram Equalization for Image Contrast Enhancement , 2007, 2007 Digest of Technical Papers International Conference on Consumer Electronics.

[2]  Robert L. Stevenson,et al.  A Bayesian approach to image expansion for improved definitio , 1994, IEEE Trans. Image Process..

[3]  Thomas S. Huang,et al.  Multiframe image restoration and registration , 1984 .

[4]  Richard Szeliski,et al.  Symmetric Sub-Pixel Stereo Matching , 2002, ECCV.

[5]  Kiyoharu Aizawa,et al.  A scheme for acquiring very high resolution images using multiple cameras , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[7]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting , 2010 .

[8]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[9]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[10]  David Capel,et al.  Image Mosaicing and Super-resolution , 2004, Distinguished Dissertations.

[11]  C. A. Murthy,et al.  Hue-preserving color image enhancement without gamut problem , 2003, IEEE Trans. Image Process..

[12]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[13]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[14]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[15]  Panos Papamichalis,et al.  A Robust Image Super-Resolution Scheme Based on Redescending M-Estimators and Information-Theoretic Divergence , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[16]  Hiroyasu Koshimizu,et al.  Estimation of Minimum Quantization Levels by Using Reconstructed Histogram , 2011, MVA.

[17]  A. Murat Tekalp,et al.  Robust, object-based high-resolution image reconstruction from low-resolution video , 1997, IEEE Trans. Image Process..

[18]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.