Motivations and realizations of Krylov subspace methods for large sparse linear systems

We briefly introduce typical and important direct and iterative methods for solving systems of linear equations, concretely describe their fundamental characteristics in viewpoints of both theory and applications, and clearly clarify the substantial differences among these methods. In particular, the motivations of searching the solution of a linear system in a Krylov subspace are described and the algorithmic realizations of the generalized minimal residual (GMRES) method are shown, and several classes of state-of-the-art algebraic preconditioners are briefly reviewed. All this is useful for correctly, deeply and completely understanding the application scopes, theoretical properties and numerical behaviors of these methods, and is also helpful in designing new methods for solving systems of linear equations.

[1]  M. Hodson,et al.  Erratum , 1991 .

[2]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[3]  Gene H. Golub,et al.  On successive‐overrelaxation acceleration of the Hermitian and skew‐Hermitian splitting iterations , 2007, Numer. Linear Algebra Appl..

[4]  Hassane Sadok,et al.  Greedy Tikhonov regularization for large linear ill-posed problems , 2007, Int. J. Comput. Math..

[5]  Kwok-Wing Chau,et al.  A new image thresholding method based on Gaussian mixture model , 2008, Appl. Math. Comput..

[6]  Martin Stoll,et al.  Fast Solvers for Cahn-Hilliard Inpainting , 2014, SIAM J. Imaging Sci..

[7]  Iain S. Duff,et al.  Strategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems , 2005, SIAM J. Matrix Anal. Appl..

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Zhong-Zhi Bai,et al.  Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems , 2000, Appl. Math. Comput..

[10]  Zhong-Zhi Bai,et al.  A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations , 1996 .

[11]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[12]  Wang Deren,et al.  Parallel multilevel iterative methods , 1997 .

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  Zhong-Zhi Bai Parallel hybrid algebraic multilevel iterative methods , 1997 .

[15]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[16]  Vladimir Kostic,et al.  New subclasses of block H-matrices with applications to parallel decomposition-type relaxation methods , 2006, Numerical Algorithms.

[17]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[18]  M. Benzi,et al.  Some Preconditioning Techniques for Saddle Point Problems , 2008 .

[19]  Rajandrea Sethi,et al.  Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon , 2012, Eng. Appl. Artif. Intell..

[20]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[21]  Serge Gratton,et al.  Multigrid based preconditioners for the numerical solution of two-dimensional heterogeneous problems in geophysics , 2007 .

[22]  Apostolos Hadjidimos,et al.  On the Convergence of Some Generalized Iterative Methods , 1986 .

[23]  Vladimir Kostic,et al.  A note on the convergence of the AOR method , 2007, Appl. Math. Comput..

[24]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[25]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[26]  Ilse C. F. Ipsen,et al.  THE IDEA BEHIND KRYLOV METHODS , 1998 .

[27]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[28]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[29]  Andrew J. Wathen,et al.  GMRES convergence bounds that depend on the right-hand-side vector , 2014 .

[30]  Iain S. Duff,et al.  The design and use of a sparse direct solver for skew symmetric matrices , 2009 .

[31]  Zhong-Zhi Bai A class of hybrid algebraic multilevel preconditioning methods , 1996 .

[32]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[33]  Tz,et al.  ON THE CONVERGENCE OF THE RELAXATION METHODSFOR POSITIVE DEFINITE LINEAR SYSTEMS , 1998 .

[34]  Iain S. Duff,et al.  A Class of Incomplete Orthogonal Factorization Methods. I: Methods and Theories , 1999 .

[35]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[36]  O. Axelsson Iterative solution methods , 1995 .

[37]  Owe Axelsson,et al.  A unified framework for the construction of various algebraic multilevel preconditioning methods , 1999 .

[38]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[39]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[40]  A. Hadjidimos Successive overrelaxation (SOR) and related methods , 2000 .

[41]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[42]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[43]  Jun-Feng Yin,et al.  Modified incomplete orthogonal factorization methods using Givens rotations , 2009, Computing.

[44]  白中治 A UNIFIED FRAMEWORK FOR THE CONSTRUCTION OF VARIOUS ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1999 .

[45]  Chuntian Cheng,et al.  Long-Term Prediction of Discharges in Manwan Reservoir Using Artificial Neural Network Models , 2005, ISNN.

[46]  A. Yu. Yeremin,et al.  Factorized Sparse Approximate Inverse Preconditioning II: Solution of 3D FE Systems on Massively Parallel Computers , 1995, Int. J. High Speed Comput..

[47]  Ronald B. Morgan,et al.  GMRES Convergence for Perturbed Coefficient Matrices, with Application to Approximate Deflation Preconditioning , 2013, SIAM J. Matrix Anal. Appl..