Parallel operations of sparse polynomials on multicores: I. multiplication and Poisson bracket

The multiplication of the sparse multivariate polynomials using the recursive representations is revisited to take advantage on the multicore processors. We take care of the memory management and load-balancing in order to obtain linear speedup. The widely used Poisson bracket during the studies of the dynamical systems had been parallelized on these computers. Benchmarks are presented, comparing our implementation to the other computer algebra systems.

[1]  Richard J. Fateman Comparing the speed of programs for sparse polynomial multiplication , 2003, SIGS.

[2]  Francesco Biscani,et al.  Design and implementation of a modern algebraic manipulator for Celestial Mechanics , 2008 .

[3]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[4]  Jacques Laskar,et al.  Development of TRIP: Fast Sparse Multivariate Polynomial Multiplication Using Burst Tries , 2006, International Conference on Computational Science.

[5]  Dimitrios S. Nikolopoulos,et al.  Scalable locality-conscious multithreaded memory allocation , 2006, ISMM '06.

[6]  Jacques Laskar,et al.  Accurate methods in general planetary theory , 1985 .

[7]  Wolfgang Küchlin,et al.  The S-Threads Environment for Parallel Symbolic Computation , 1990, CAP.

[8]  M. Monagan,et al.  Sparse Polynomial Pseudo Division Using a Heap , 2008 .

[9]  Michael B. Monagan,et al.  Parallel sparse polynomial multiplication using heaps , 2009, ISSAC '09.

[10]  Kathryn S. McKinley,et al.  Hoard: a scalable memory allocator for multithreaded applications , 2000, SIGP.

[11]  James Reinders,et al.  Intel® threading building blocks , 2008 .

[12]  J. Cary LIE TRANSFORM PERTURBATION THEORY FOR HAMILTONIAN SYSTEMS , 1981 .

[13]  Angel Jorba,et al.  A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems , 1999, Exp. Math..

[14]  Franz Winkler,et al.  Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.

[15]  Wolfgang Schreiner Virtual Tasks for the PACLIB Kernel , 1994, CONPAR.

[16]  Wolfgang Küchlin,et al.  PARSAC-2: A Parallel SAC-2 Based on Threads , 1990, AAECC.

[17]  Paul S. Wang,et al.  Parallel Polynomial Operations on SMPs: an Overview , 1996, J. Symb. Comput..