Algorithm 810: The SLEIGN2 Sturm-Liouville Code

The SLEIGN2 code is based on the ideas and methods of the original SLEIGN code of 1979. The main purpose of the SLEIGN2 code is to compute eigenvalues and eigenfunctions of regular and singular self-adjoint Sturm-Liouville problems, with both separated and coupled boundary conditions, and to approximate the continuous spectrum in the singular case. The code uses some new algorithms, which we describe, and has a driver program that offers a user-friendly interface. In this paper the algorithms and their implementations are discussed, and the class of problems to which each algorithm applied is identified.

[1]  A. Zettl,et al.  STURM-LIOUVILLE PROBLEMS , 1999 .

[2]  Paul B. Bailey,et al.  Eigenvalue and eigenfunction computations for Sturm-Liouville problems , 1991, TOMS.

[3]  Philippe G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value problems , 1968 .

[4]  J. Weidmann,et al.  Spectral Theory of Ordinary Differential Operators , 1987 .

[5]  Lawrence F. Shampine,et al.  Automatic Solution of the Sturm-Liouville Problem , 1978, TOMS.

[6]  Marco Marletta Certification of algorithm 700 numerical tests of the SLEIGN software for Sturm-Liouville problems , 1991, TOMS.

[7]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[8]  Steven Pruess,et al.  Mathematical software for Sturm-Liouville problems , 1993, TOMS.

[9]  A. Zettl,et al.  Dependence of Eigenvalues on the Problem , 1997 .

[10]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[11]  P. B. Bailey A slightly modified Prüfer transformation useful for calculating Sturm-Liouville eigenvalues , 1978 .

[12]  Anton Zettl,et al.  Computing Eigenvalues of Singular Sturm-Liouville Problems , 1991 .

[13]  W. N. Everitt,et al.  Sturm—Liouville problems and discontinuous eigenvalues , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  W. N. Everitt On the transformation theory of ordinary second-order linear symmetric differential expressions , 1982 .

[15]  Don Hinton Spectral Theory & Computational Methods of Sturm-Liouville Problems , 1997 .

[16]  Lawrence F. Shampine,et al.  Solving Sturm--Liouville eigenvalue problems. [SLEIGN, for CDC 6600 computer] , 1976 .

[17]  Qingkai Kong,et al.  Dependence of the nth Sturm–Liouville Eigenvalue on the Problem , 1999 .

[18]  Paul B. Bailey,et al.  Algorithm 700: A Fortran software package for Sturm–Liouville problems , 1991, TOMS.

[19]  Qingkai Kong,et al.  Inequalities Among Eigenvalues of Sturm-Liouville Problems , 1999 .

[20]  Man Kam Kwong,et al.  Oscillation of Eigenfunctions of Weighted Regular Sturm‐Liouville Problems , 1983 .

[21]  Philippe G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value problems IV. Periodic boundary conditions , 1968 .

[22]  John D. Pryce,et al.  A test package for Sturm-Liouville solvers , 1999, TOMS.

[23]  Paul B. Bailey,et al.  Sturm-Liouville Eigenvalues via a Phase Function , 1966 .

[24]  W. N. Everitt,et al.  Discontinuous dependence of the n -th Sturm-Liouville eigenvalue , 1997 .

[25]  Paul B. Bailey,et al.  Regular approximations of singular Sturm-Liouville problems , 1993 .

[26]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[27]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[28]  P. Goldbart,et al.  Linear differential operators , 1967 .

[29]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[30]  Erich Müller-Pfeiffer,et al.  Spectral theory of ordinary differential operators , 1981 .