Anisotropic hyperbolic inflation

Hyperbolic inflation is an extension of the slow-roll inflation in multi-field models. We extend hyperbolic inflation by adding a gauge field and find four-type attractor solutions: slow-roll inflation, hyperbolic inflation, anisotropic slow roll inflation, and anisotropic hyperbolic inflation. We perform the stability analysis with the dynamical system method. We also study the transition behaviors of solutions between anisotropic slow roll inflation and anisotropic hyperbolic inflation. Our result indicates that destabilization of the standard slow-roll inflation ubiquitously occurs in multi-scalar-gauge field inflationary scenarios.

[1]  J. Soda,et al.  Cosmic no-hair conjecture and inflation with an SU(3) gauge field , 2021, Physical Review D.

[2]  E. Komatsu,et al.  The isotropic attractor solution of axion-SU(2) inflation: universal isotropization in Bianchi type-I geometry , 2021, Journal of Cosmology and Astroparticle Physics.

[3]  W. Kao,et al.  Anisotropic power-law inflation for a model of two scalar and two vector fields , 2021, The European Physical Journal C.

[4]  I. Moss,et al.  Observational constraints on Hyperinflation , 2020, Journal of Cosmology and Astroparticle Physics.

[5]  Tuan Q. Do,et al.  Stable small spatial hairs in a power-law k-inflation model , 2020, 2007.04867.

[6]  E. Komatsu,et al.  How attractive is the isotropic attractor solution of axion-SU(2) inflation? , 2020, Journal of Cosmology and Astroparticle Physics.

[7]  E. Sfakianakis,et al.  Scaling attractors in multi-field inflation , 2019, Journal of Cosmology and Astroparticle Physics.

[8]  Theodor Bjorkmo,et al.  Hyperinflation generalised: from its attractor mechanism to its tension with the ‘swampland conditions’ , 2019, Journal of High Energy Physics.

[9]  Perseas Christodoulidis Probing the inflationary evolution using analytical solutions , 2018 .

[10]  Perseas Christodoulidis General solutions to $$\mathcal {N}$$-field cosmology with exponential potentials , 2018, The European Physical Journal C.

[11]  S. Garg,et al.  Bounds on slow roll and the de Sitter Swampland , 2018, Journal of High Energy Physics.

[12]  P. Steinhardt,et al.  On the cosmological implications of the string Swampland , 2018, Physics Letters B.

[13]  Hirosi Ooguri,et al.  De Sitter Space and the Swampland , 2018, 1806.08362.

[14]  P. Adshead,et al.  Anisotropic massive gauge-flation , 2018, Journal of Cosmology and Astroparticle Physics.

[15]  I. Zavala,et al.  Anisotropic inflation with derivative couplings , 2017, Physical Review D.

[16]  J. Soda,et al.  Anisotropic constant-roll Inflation , 2017, 1710.09701.

[17]  S. Mukohyama,et al.  Primordial perturbations from inflation with a hyperbolic field-space , 2017, 1707.05125.

[18]  S. Lahiri Anisotropic inflation in Gauss-Bonnet gravity , 2016, 1605.09247.

[19]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[20]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[21]  K. Turzyński,et al.  Geometrical Destabilization of Inflation. , 2015, Physical review letters.

[22]  J. Soda,et al.  Designing Anisotropic Inflation with Form Fields , 2015, 1506.02450.

[23]  Ippei Obata,et al.  Chromo-Natural Inflation in the Axiverse , 2014, 1412.7620.

[24]  E. Komatsu,et al.  Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation , 2014, 1411.5489.

[25]  J. Soda Anisotropic Power-law Inflation:A counter example to the cosmic no-hair conjecture , 2014, 1410.8643.

[26]  A. Maleknejad,et al.  Chromo-natural model in anisotropic background , 2013, 1311.3361.

[27]  K. Maeda,et al.  Stability analysis of inflation with an SU(2) gauge field , 2013, 1310.6916.

[28]  S. Tsujikawa,et al.  Anisotropic power-law k-inflation , 2013, 1310.3053.

[29]  Eiichiro Komatsu,et al.  Limits on anisotropic inflation from the Planck data , 2013, 1310.1605.

[30]  M. Peloso,et al.  A review of axion inflation in the era of Planck , 2013, 1305.3557.

[31]  S. Tsujikawa,et al.  Anisotropic non-Gaussianity from a two-form field , 2013, 1303.7340.

[32]  M. Sheikh-Jabbari,et al.  Gauge fields and inflation , 2012, 1212.2921.

[33]  K. Maeda,et al.  Inflationary dynamics with a non-Abelian gauge field , 2012, 1210.4054.

[34]  P. Adshead,et al.  Gauge-flation trajectories in chromo-natural inflation , 2012, 1203.2264.

[35]  P. Adshead,et al.  Natural inflation on a steep potential with classical non-Abelian gauge fields. , 2012, Physical review letters.

[36]  J. Soda Statistical anisotropy from anisotropic inflation , 2012, 1201.6434.

[37]  Kei Yamamoto,et al.  Inflation with multi-vector hair: the fate of anisotropy , 2012, 1201.5309.

[38]  Keiju Murata,et al.  Anisotropic inflation with non-abelian gauge kinetic function , 2011, 1103.6164.

[39]  M. M. Sheikh-Jabbari,et al.  Non-Abelian Gauge Field Inflation , 2011, 1102.1932.

[40]  M. M. Sheikh-Jabbari,et al.  Gauge-flation: Inflation From Non-Abelian Gauge Fields , 2011, 1102.1513.

[41]  J. Soda,et al.  Anisotropic power-law inflation , 2010, 1010.5307.

[42]  J. Soda,et al.  Cosmological magnetic fields from inflation and backreaction , 2009, 0908.3509.

[43]  J. Soda,et al.  Inflationary universe with anisotropic hair. , 2009, Physical review letters.

[44]  D. Mota,et al.  Spinflation , 2007, 0709.2666.

[45]  S. Carroll,et al.  Imprints of a Primordial Preferred Direction on the Microwave Background , 2007, astro-ph/0701357.

[46]  H. Ooguri,et al.  On the Geometry of the String Landscape and the Swampland , 2006, hep-th/0605264.

[47]  C. Vafa The String Landscape and the Swampland , 2005, hep-th/0509212.

[48]  A. Liddle,et al.  Exponential potentials and cosmological scaling solutions , 1997, gr-qc/9711068.

[49]  J. Halliwell Scalar fields in cosmology with an exponential potential , 1987 .

[50]  R. Wald Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant , 1983 .

[51]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[52]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[53]  Katsuhiko Sato Cosmological baryon-number domain structure and the first order phase transition of a vacuum , 1981 .

[54]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[55]  Perseas Christodoulidis General solutions toN -field cosmology with exponential potentials , 2021 .

[56]  Adam R. Brown Hyperbolic Inflation. , 2017, Physical Review Letters.