Anisotropic hyperbolic inflation
暂无分享,去创建一个
[1] J. Soda,et al. Cosmic no-hair conjecture and inflation with an SU(3) gauge field , 2021, Physical Review D.
[2] E. Komatsu,et al. The isotropic attractor solution of axion-SU(2) inflation: universal isotropization in Bianchi type-I geometry , 2021, Journal of Cosmology and Astroparticle Physics.
[3] W. Kao,et al. Anisotropic power-law inflation for a model of two scalar and two vector fields , 2021, The European Physical Journal C.
[4] I. Moss,et al. Observational constraints on Hyperinflation , 2020, Journal of Cosmology and Astroparticle Physics.
[5] Tuan Q. Do,et al. Stable small spatial hairs in a power-law k-inflation model , 2020, 2007.04867.
[6] E. Komatsu,et al. How attractive is the isotropic attractor solution of axion-SU(2) inflation? , 2020, Journal of Cosmology and Astroparticle Physics.
[7] E. Sfakianakis,et al. Scaling attractors in multi-field inflation , 2019, Journal of Cosmology and Astroparticle Physics.
[8] Theodor Bjorkmo,et al. Hyperinflation generalised: from its attractor mechanism to its tension with the ‘swampland conditions’ , 2019, Journal of High Energy Physics.
[9] Perseas Christodoulidis. Probing the inflationary evolution using analytical solutions , 2018 .
[10] Perseas Christodoulidis. General solutions to $$\mathcal {N}$$-field cosmology with exponential potentials , 2018, The European Physical Journal C.
[11] S. Garg,et al. Bounds on slow roll and the de Sitter Swampland , 2018, Journal of High Energy Physics.
[12] P. Steinhardt,et al. On the cosmological implications of the string Swampland , 2018, Physics Letters B.
[13] Hirosi Ooguri,et al. De Sitter Space and the Swampland , 2018, 1806.08362.
[14] P. Adshead,et al. Anisotropic massive gauge-flation , 2018, Journal of Cosmology and Astroparticle Physics.
[15] I. Zavala,et al. Anisotropic inflation with derivative couplings , 2017, Physical Review D.
[16] J. Soda,et al. Anisotropic constant-roll Inflation , 2017, 1710.09701.
[17] S. Mukohyama,et al. Primordial perturbations from inflation with a hyperbolic field-space , 2017, 1707.05125.
[18] S. Lahiri. Anisotropic inflation in Gauss-Bonnet gravity , 2016, 1605.09247.
[19] R. W. Ogburn,et al. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.
[20] D. Marsh,et al. Axion Cosmology , 2015, 1510.07633.
[21] K. Turzyński,et al. Geometrical Destabilization of Inflation. , 2015, Physical review letters.
[22] J. Soda,et al. Designing Anisotropic Inflation with Form Fields , 2015, 1506.02450.
[23] Ippei Obata,et al. Chromo-Natural Inflation in the Axiverse , 2014, 1412.7620.
[24] E. Komatsu,et al. Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation , 2014, 1411.5489.
[25] J. Soda. Anisotropic Power-law Inflation:A counter example to the cosmic no-hair conjecture , 2014, 1410.8643.
[26] A. Maleknejad,et al. Chromo-natural model in anisotropic background , 2013, 1311.3361.
[27] K. Maeda,et al. Stability analysis of inflation with an SU(2) gauge field , 2013, 1310.6916.
[28] S. Tsujikawa,et al. Anisotropic power-law k-inflation , 2013, 1310.3053.
[29] Eiichiro Komatsu,et al. Limits on anisotropic inflation from the Planck data , 2013, 1310.1605.
[30] M. Peloso,et al. A review of axion inflation in the era of Planck , 2013, 1305.3557.
[31] S. Tsujikawa,et al. Anisotropic non-Gaussianity from a two-form field , 2013, 1303.7340.
[32] M. Sheikh-Jabbari,et al. Gauge fields and inflation , 2012, 1212.2921.
[33] K. Maeda,et al. Inflationary dynamics with a non-Abelian gauge field , 2012, 1210.4054.
[34] P. Adshead,et al. Gauge-flation trajectories in chromo-natural inflation , 2012, 1203.2264.
[35] P. Adshead,et al. Natural inflation on a steep potential with classical non-Abelian gauge fields. , 2012, Physical review letters.
[36] J. Soda. Statistical anisotropy from anisotropic inflation , 2012, 1201.6434.
[37] Kei Yamamoto,et al. Inflation with multi-vector hair: the fate of anisotropy , 2012, 1201.5309.
[38] Keiju Murata,et al. Anisotropic inflation with non-abelian gauge kinetic function , 2011, 1103.6164.
[39] M. M. Sheikh-Jabbari,et al. Non-Abelian Gauge Field Inflation , 2011, 1102.1932.
[40] M. M. Sheikh-Jabbari,et al. Gauge-flation: Inflation From Non-Abelian Gauge Fields , 2011, 1102.1513.
[41] J. Soda,et al. Anisotropic power-law inflation , 2010, 1010.5307.
[42] J. Soda,et al. Cosmological magnetic fields from inflation and backreaction , 2009, 0908.3509.
[43] J. Soda,et al. Inflationary universe with anisotropic hair. , 2009, Physical review letters.
[44] D. Mota,et al. Spinflation , 2007, 0709.2666.
[45] S. Carroll,et al. Imprints of a Primordial Preferred Direction on the Microwave Background , 2007, astro-ph/0701357.
[46] H. Ooguri,et al. On the Geometry of the String Landscape and the Swampland , 2006, hep-th/0605264.
[47] C. Vafa. The String Landscape and the Swampland , 2005, hep-th/0509212.
[48] A. Liddle,et al. Exponential potentials and cosmological scaling solutions , 1997, gr-qc/9711068.
[49] J. Halliwell. Scalar fields in cosmology with an exponential potential , 1987 .
[50] R. Wald. Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant , 1983 .
[51] Andreas Albrecht,et al. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .
[52] Andrei Linde,et al. A new inflationary universe scenario: A possible solution of the horizon , 1982 .
[53] Katsuhiko Sato. Cosmological baryon-number domain structure and the first order phase transition of a vacuum , 1981 .
[54] A. Guth. Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .
[55] Perseas Christodoulidis. General solutions toN -field cosmology with exponential potentials , 2021 .
[56] Adam R. Brown. Hyperbolic Inflation. , 2017, Physical Review Letters.