On the implementation of low-dissipative Runge–Kutta projection methods for time dependent flows using OpenFOAM®

[1]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[2]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[3]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[4]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[5]  A. D. Gosman,et al.  The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme , 1986 .

[6]  C. Hirsch Numerical computation of internal and external flows , 1988 .

[7]  W. Schiesser Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs , 1993 .

[8]  David I. Lewin Making Molecular Structures Crystal Clear , 1998 .

[9]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[10]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[11]  Hrvoje Jasak,et al.  Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .

[12]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[13]  Fernando F. Grinstein,et al.  On MILES based on flux‐limiting algorithms , 2005 .

[14]  B. J. Boersma,et al.  A staggered compact finite difference formulation for the compressible Navier-Stokes equations , 2005 .

[15]  H. Jasak,et al.  Preconditioned Linear Solvers for Large Eddy Simulation , 2007 .

[16]  M. A. Abdou,et al.  A bridge between projection methods and SIMPLE type methods for incompressible Navier–Stokes equations , 2007 .

[17]  T. K. Sengupta,et al.  Error dynamics: Beyond von Neumann analysis , 2007, J. Comput. Phys..

[18]  Firdaus E. Udwadia,et al.  Accelerated Runge-Kutta Methods , 2008 .

[19]  Laszlo Fuchs,et al.  Simulations of a Turbulent Flow Past a Sudden Expansion: A Sensitivity Analysis , 2008 .

[20]  Johannes Janicka,et al.  Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air–fuel mixing in realistic DISI IC-engines , 2009 .

[21]  C. J. Greenshields,et al.  Implementation of semi‐discrete, non‐staggered central schemes in a colocated, polyhedral, finite volume framework, for high‐speed viscous flows , 2009 .

[22]  Jaal Ghandhi,et al.  Residual gas homogeneity measurements , 2009 .

[23]  Christopher J. Rutland,et al.  Large eddy simulation modelling of spray-induced turbulence effects , 2009 .

[24]  A. Benkenida,et al.  Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES , 2009 .

[25]  Tapan K. Sengupta,et al.  Optimal time advancing dispersion relation preserving schemes , 2010, J. Comput. Phys..

[26]  Shashank,et al.  A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit , 2010, J. Comput. Phys..

[27]  Laszlo Fuchs,et al.  Large-Eddy Simulation of Droplet Stokes Number Effects on Mixture Quality in Fuel Sprays , 2010 .

[28]  Laszlo Fuchs,et al.  Large-Eddy Simulation of Droplet Stokes Number Effects on Turbulent Spray Shape , 2010 .

[29]  Bendiks Jan Boersma,et al.  A 6th order staggered compact finite difference method for the incompressible Navier-Stokes and scalar transport equations , 2011, J. Comput. Phys..

[30]  Martti Larmi,et al.  Large Eddy Simulation of Flow over a Valve in a Simplified Cylinder Geometry , 2011 .

[31]  Martti Larmi,et al.  Large-Eddy Simulation of Subsonic Jets , 2011 .

[32]  Christopher J. Rutland,et al.  Large-eddy simulations for internal combustion engines – a review , 2011 .

[33]  Makoto Nagaoka,et al.  A fractal-based flame propagation model for large eddy simulation , 2011 .

[34]  Laszlo Fuchs,et al.  A low-dissipative, scale-selective discretization scheme for the Navier–Stokes equations , 2012 .

[35]  Søren Knudsen Kær,et al.  Large-eddy simulations of the non-reactive flow in the Sydney swirl burner , 2012 .

[36]  H. Jasak,et al.  A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow , 2012 .

[37]  Martti Larmi,et al.  Large Eddy Simulation of the Intake Flow in a Realistic Single Cylinder Configuration , 2012 .

[38]  Xue-Song Bai,et al.  A semi‐implicit scheme for large Eddy simulation of piston engine flow and combustion , 2013 .

[39]  Federico Flores,et al.  CFD simulations of turbulent buoyant atmospheric flows over complex geometry: Solver development in OpenFOAM , 2013 .

[40]  Santosh Tirunagari,et al.  Large-eddy simulation of highly underexpanded transient gas jets , 2013 .

[41]  Franz X. Tanner,et al.  Large Eddy Simulation of High Gas Density Effects in Fuel Sprays , 2013 .

[42]  Makoto Tsubokura,et al.  Coupled analysis of unsteady aerodynamics and vehicle motion of a road vehicle in windy conditions , 2013 .

[43]  Ivar S. Ertesvåg,et al.  Modeling of turbulent separated flows using OpenFOAM , 2013 .

[44]  Martti Larmi,et al.  LARGE EDDY SIMULATION OF HIGH-VELOCITY FUEL SPRAYS: STUDYING MESH RESOLUTION AND BREAKUP MODEL EFFECTS FOR SPRAY A , 2013 .