Adaptive Multi-index Collocation for Uncertainty Quantification and Sensitivity Analysis

In this paper, we present an adaptive algorithm to construct response surface approximations of high-fidelity models using a hierarchy of lower fidelity models. Our algorithm is based on multi-index stochastic collocation and automatically balances physical discretization error and response surface error to construct an approximation of model outputs. This surrogate can be used for uncertainty quantification (UQ) and sensitivity analysis (SA) at a fraction of the cost of a purely high-fidelity approach. We demonstrate the effectiveness of our algorithm on a canonical test problem from the UQ literature and a complex multi-physics model that simulates the performance of an integrated nozzle for an unmanned aerospace vehicle. We find that, when the input-output response is sufficiently smooth, our algorithm produces approximations that can be over two orders of magnitude more accurate than single fidelity approximations for a fixed computational budget.

[1]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[2]  Charbel Farhat,et al.  A nonparametric probabilistic approach for quantifying uncertainties in low‐dimensional and high‐dimensional nonlinear models , 2017 .

[3]  Dongbin Xiu,et al.  A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..

[4]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[5]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[6]  Hans-Joachim Bungartz,et al.  Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction , 2018 .

[7]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[8]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[9]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[10]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[11]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[12]  Gianluca Geraci,et al.  A Generalized Framework for Approximate Control Variates , 2018 .

[13]  Polynomial chaos expansions for dependent random variables , 2019, Computer Methods in Applied Mechanics and Engineering.

[14]  Sertac Karaman,et al.  A continuous analogue of the tensor-train decomposition , 2015, Computer Methods in Applied Mechanics and Engineering.

[15]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[16]  Michael S. Eldred,et al.  Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models. , 2015 .

[17]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[18]  Alex A. Gorodetsky,et al.  Gradient-based optimization for regression in the functional tensor-train format , 2018, J. Comput. Phys..

[19]  J. Alonso,et al.  SU2: An Open-Source Suite for Multiphysics Simulation and Design , 2016 .

[20]  Tim Wildey,et al.  Convergence of Probability Densities Using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification , 2018, SIAM J. Sci. Comput..

[21]  G. Iaccarino,et al.  Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.

[22]  Kevin Carlberg,et al.  Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.

[23]  Akil C. Narayan,et al.  Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..

[24]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[25]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[26]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[27]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[28]  Stephen Roberts,et al.  Multifidelity Sparse-Grid-Based Uncertainty Quantification for the Hokkaido Nansei-oki Tsunami , 2017, Pure and Applied Geophysics.

[29]  Gregery T. Buzzard Efficient Basis Change for Sparse-Grid Interpolating Polynomials with Application to T-Cell Sensitivity Analysis , 2013 .

[30]  Loic Le Gratiet,et al.  RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY , 2012, 1210.0686.

[31]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[32]  Nitin Agarwal,et al.  A data‐driven stochastic collocation approach for uncertainty quantification in MEMS , 2010 .

[33]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[34]  Richard W. Fenrich,et al.  RELIABILITY-BASED DESIGN OPTIMIZATION OF A SUPERSONIC NOZZLE , 2018 .

[35]  Gianluca Geraci,et al.  A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications , 2017 .

[36]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[37]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[38]  Leo Wai-Tsun Ng,et al.  Multidelity approaches for design under uncertainty , 2013 .

[39]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.

[40]  Andreas C. Damianou,et al.  Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Raul Tempone,et al.  Multi-Index Stochastic Collocation for random PDEs , 2015, 1508.07467.

[42]  Roger Ghanem,et al.  Reduced chaos expansions with random coefficientsin reduced‐dimensional stochastic modeling of coupled problems , 2012, 1207.0910.

[43]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[44]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[45]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[46]  Lea Fleischer,et al.  Design And Analysis Of Computer Experiments , 2016 .

[47]  Alberto Guadagnini,et al.  Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model , 2013, Computational Geosciences.

[48]  Stephen Roberts,et al.  Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification , 2012 .

[49]  Gregery T. Buzzard,et al.  Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..

[50]  Benjamin Peherstorfer,et al.  Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..