暂无分享,去创建一个
Gianluca Geraci | John D. Jakeman | Alex Gorodetsky | Michael Eldred | M. Eldred | J. Jakeman | G. Geraci | A. Gorodetsky
[1] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[2] Charbel Farhat,et al. A nonparametric probabilistic approach for quantifying uncertainties in low‐dimensional and high‐dimensional nonlinear models , 2017 .
[3] Dongbin Xiu,et al. A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..
[4] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[5] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[6] Hans-Joachim Bungartz,et al. Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction , 2018 .
[7] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[8] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[9] Leo Wai-Tsun Ng,et al. Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .
[10] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[11] Tiangang Cui,et al. Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.
[12] Gianluca Geraci,et al. A Generalized Framework for Approximate Control Variates , 2018 .
[13] Polynomial chaos expansions for dependent random variables , 2019, Computer Methods in Applied Mechanics and Engineering.
[14] Sertac Karaman,et al. A continuous analogue of the tensor-train decomposition , 2015, Computer Methods in Applied Mechanics and Engineering.
[15] Max Gunzburger,et al. A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.
[16] Michael S. Eldred,et al. Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models. , 2015 .
[17] Thomas J. Santner,et al. Design and analysis of computer experiments , 1998 .
[18] Alex A. Gorodetsky,et al. Gradient-based optimization for regression in the functional tensor-train format , 2018, J. Comput. Phys..
[19] J. Alonso,et al. SU2: An Open-Source Suite for Multiphysics Simulation and Design , 2016 .
[20] Tim Wildey,et al. Convergence of Probability Densities Using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification , 2018, SIAM J. Sci. Comput..
[21] G. Iaccarino,et al. Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.
[22] Kevin Carlberg,et al. Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.
[23] Akil C. Narayan,et al. Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..
[24] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[25] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[26] A. O'Hagan,et al. Predicting the output from a complex computer code when fast approximations are available , 2000 .
[27] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[28] Stephen Roberts,et al. Multifidelity Sparse-Grid-Based Uncertainty Quantification for the Hokkaido Nansei-oki Tsunami , 2017, Pure and Applied Geophysics.
[29] Gregery T. Buzzard. Efficient Basis Change for Sparse-Grid Interpolating Polynomials with Application to T-Cell Sensitivity Analysis , 2013 .
[30] Loic Le Gratiet,et al. RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY , 2012, 1210.0686.
[31] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[32] Nitin Agarwal,et al. A data‐driven stochastic collocation approach for uncertainty quantification in MEMS , 2010 .
[33] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[34] Richard W. Fenrich,et al. RELIABILITY-BASED DESIGN OPTIMIZATION OF A SUPERSONIC NOZZLE , 2018 .
[35] Gianluca Geraci,et al. A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications , 2017 .
[36] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[37] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[38] Leo Wai-Tsun Ng,et al. Multidelity approaches for design under uncertainty , 2013 .
[39] Fabio Nobile,et al. Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.
[40] Andreas C. Damianou,et al. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[41] Raul Tempone,et al. Multi-Index Stochastic Collocation for random PDEs , 2015, 1508.07467.
[42] Roger Ghanem,et al. Reduced chaos expansions with random coefficientsin reduced‐dimensional stochastic modeling of coupled problems , 2012, 1207.0910.
[43] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[44] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[45] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[46] Lea Fleischer,et al. Design And Analysis Of Computer Experiments , 2016 .
[47] Alberto Guadagnini,et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model , 2013, Computational Geosciences.
[48] Stephen Roberts,et al. Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification , 2012 .
[49] Gregery T. Buzzard,et al. Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..
[50] Benjamin Peherstorfer,et al. Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..