Geometric Properties of Fractional Brownian Sheets

AbstractLet $B^H=\{B^H(t), t\in {\Bbb R}_+^N\}$ be an (N, d)-fractional Brownian sheet with Hurst index H = (H1,...,HN) ∈ (0, 1)N. Our objective of the present article is to characterize the anisotropic nature of BH in terms of H. We prove the following results: (1) BH is sectorially locally nondeterministic. (2) By introducing a notion of "dimension" for Borel measures and sets, which is suitable for describing the anisotropic nature of BH, we determine ${\rm dim}_{\cal H}B^H(E)$ for an arbitrary Borel set $E \subset (0, \infty)^N.$ Moreover, when Bα is an (N, d)-fractional Brownian sheet with index 〈α〉 = (α,..., α) (0 < α < 1), we prove the following uniform Hausdorff dimension result for its image sets: If N ≤ αd, then with probability one, ${\rm dim}_{\cal H}B^{\langle\alpha\rangle}(E)=\frac{1}{\alpha}{\rm dim}_{\cal H}E {\rm for\ all\ Borel\ sets}\ E \subset (0, \infty)^N.$ (3) We provide sufficient conditions for the image BH(E) to be a Salem set or to have interior points. The results in (2) and (3) describe the geometric and Fourier analytic properties of BH. They extend and improve the previous theorems of Mountford [35], Khoshnevisan and Xiao [29] and Khoshnevisan, Wu, and Xiao [28] for the Brownian sheet, and Ayache and Xiao [5] for fractional Brownian sheets.

[1]  Yimin Xiao Packing dimension of the image of fractional Brownian motion , 1997 .

[2]  Drap brownien fractionnaire , 2002 .

[3]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[4]  A. Ayache,et al.  Joint continuity of the local times of fractional Brownian sheets , 2008, 0808.3054.

[5]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .

[6]  Yimin Xiao,et al.  Images of Gaussian Random Fields: Salem Sets and Interior Points , 2006 .

[7]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[8]  Yimin Xiao Strong Local Nondeterminism and Sample Path Properties of Gaussian Random Fields , 2006 .

[9]  C. Tricot Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[11]  Multiparameter Fractional Brownian Motion And Quasi-Linear Stochastic Partial Differential Equations , 2001 .

[12]  D. Khoshnevisan,et al.  OF THE BROWNIAN SHEET , 2005 .

[13]  S. Krantz Fractal geometry , 1989 .

[14]  Dongsheng Wu,et al.  Sectorial Local Non-Determinism and the Geometry of the Brownian Sheet , 2006 .

[15]  G. Mockenhaupt Salem sets and restriction properties of Fourier transforms , 2000 .

[16]  D. Khoshnevisan,et al.  On the most visited sites of symmetric Markov processes , 2002 .

[17]  Murad S. Taqqu,et al.  Rate Optimality of Wavelet Series Approximations of Fractional Brownian Motion , 2003 .

[18]  S. Berman Local nondeterminism and local times of Gaussian processes , 1973 .

[19]  Antoine Ayache,et al.  Hausdorff dimension of the graph of the Fractional Brownian Sheet , 2004 .

[20]  Yimin Xiao Properties of Local Nondeterminism of Gaussian and Stable Random Fields and Their Applications , 2006 .

[21]  D. Nualart,et al.  Stochastic heat equation driven by fractional noise and local time , 2007, 0704.1824.

[22]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[23]  J. Kahane,et al.  Ensembles parfaits et séries trigonométriques , 1963 .

[24]  K. Falconer,et al.  Packing dimensions of projections and dimension profiles , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  Estimates for the Small Ball Probabilities of the Fractional Brownian Sheet , 2000 .

[26]  J. H. Zanten,et al.  Optimality of an explicit series expansion of the fractional Brownian sheet , 2005 .

[27]  Yimin Xiao,et al.  Images of the Brownian sheet , 2004 .

[28]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[29]  A. Ayache,et al.  Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets , 2005 .

[30]  Yimin Xiao Hausdorff measure of the sample paths of Gaussian random fields , 1996 .

[31]  Thomas Kühn,et al.  Optimal series representation of fractional Brownian sheets , 2002 .

[32]  S. Taylor,et al.  Fractal properties of products and projections of measures in ℝd , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  A. Garsia Continuity properties of Gaussian processes with multidimensional time parameter , 1972 .

[34]  Yimin Xiao Sample Path Properties of Anisotropic Gaussian Random Fields , 2009 .

[35]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.

[36]  Tusheng Zhang,et al.  Local times of fractional Brownian sheets , 2002 .

[37]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[38]  Werner Linde,et al.  Small Ball Probabilities of Fractional Brownian Sheets via Fractional Integration Operators , 2002 .

[39]  T. Mountford Uniform Dimension Results for the Brownian Sheet , 1989 .

[40]  Hitting Properties of a Random String , 2001, math/0112315.

[41]  J. Cuzick,et al.  Joint Continuity of Gaussian Local Times , 1982 .

[42]  Fourier analysis and paths of brownian motion , 1975 .

[43]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .