Degradation of surface film on LiCoO2 electrode by hydrogen fluoride attack at moderately elevated temperature

[1]  I. Bloom,et al.  Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite lithium ion cells with poly(vinylidene fluoride) binder. I - Microstructural changes in the anode , 2018 .

[2]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[3]  Heng Zhang,et al.  Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis , 2016 .

[4]  T. Yokoshima,et al.  Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO 2 cathode degradation correlated with Co dissolution , 2016 .

[5]  Sung You Hong,et al.  Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes , 2016 .

[6]  Minghong Liu,et al.  Improved electrolyte and its application in LiNi1/3Mn1/3Co1/3O2–Graphite full cells , 2014 .

[7]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[8]  M. Winter,et al.  Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products. , 2014, Journal of chromatography. A.

[9]  C. Lee,et al.  Depth profile studies on nickel rich cathode material surfaces after cycling with an electrolyte containing vinylene carbonate at elevated temperature. , 2014, Physical chemistry chemical physics : PCCP.

[10]  M. Winter,et al.  Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte , 2013 .

[11]  Per Jacobsson,et al.  Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy , 2013 .

[12]  D. Aurbach,et al.  Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions , 2012 .

[13]  Cao Cuong Nguyen,et al.  Study on the Dominant Film-Forming Site Among Components of Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 Cathode in Li-ion Batteries , 2011 .

[14]  J. C. Burns,et al.  The Use of Elevated Temperature Storage Experiments to Learn about Parasitic Reactions in Wound LiCoO2/Graphite Cells , 2011 .

[15]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[16]  B. Lucht,et al.  Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries , 2010 .

[17]  S. Moon,et al.  Thermal analysis of LixCoO2 cathode material of lithium ion battery , 2009 .

[18]  P. Biensan,et al.  Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study , 2007 .

[19]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[20]  Yasuyuki. Shigematsu,et al.  Thermal Behavior of a C ∕ LiCoO2 Cell, Its Components, and Their Combinations and the Effects of Electrolyte Additives , 2006 .

[21]  Liquan Chen,et al.  Origin of Solid Electrolyte Interphase on Nanosized LiCoO2 , 2006 .

[22]  Marca M. Doeff,et al.  Corrosion of Aluminum Current Collectors in Lithium-Ion Batteries with Electrolytes Containing LiPF6 , 2005 .

[23]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[24]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[25]  Ryoji Marubayashi,et al.  Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries , 2002 .

[26]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[27]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[28]  J. Yamaki,et al.  Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells , 2002 .

[29]  S. Komaba,et al.  Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries , 2002 .

[30]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .

[31]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[32]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[33]  Atsushi Yamanaka,et al.  Effects of CO2 in air on Li deintercalation from LiNi1−x−yCoxAlyO2 , 1999 .

[34]  H. Maleki,et al.  Thermal Stability Studies of Li‐Ion Cells and Components , 1999 .

[35]  K. Kanamura,et al.  Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode , 1996 .

[36]  R. Gopalakrishnan,et al.  Electrical and structural studies of lithium fluorophosphate glasses , 1995 .

[37]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[38]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1994 .

[39]  Seung M. Oh,et al.  Thermal Degradation of Solid Electrolyte Interphase (SEI) Layers by Phosphorus Pentafluoride (PF5) Attack , 2017 .

[40]  E. Peled,et al.  Review—SEI: Past, Present and Future , 2017 .

[41]  Seung M. Oh,et al.  Compositional Change of Surface Film Deposited on LiNi0.5Mn1.5O4 Positive Electrode , 2014 .

[42]  Seung M. Oh,et al.  A Comparative Study on Thermal Stability of Two Solid Electrolyte Interphase (SEI) Films on Graphite Negative Electrode , 2013 .

[43]  Robert Kostecki,et al.  The mechanism of HF formation in LiPF6-based organic carbonate electrolytes , 2012 .

[44]  L. Ernst,et al.  Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O , 2005 .

[45]  Andrea G. Bishop,et al.  Surface analysis of LiMn2O4 electrodes in carbonate based electrolytes , 2002 .

[46]  J. Badyal,et al.  Surface modification of poly(vinylidene difluoride)(PVDF) by LiOH , 1991 .