The Minkowski central partition as a pointer to a suitable distance exponent and consensus partitioning

We generate optimal Minkowski partitions at various values of the exponent p.We define the Minkowski profile based on the average similarity between partitions.Minkowski profile is highly correlated with ARI vectors related to the ground truth.We define the central Minkowski partition which can serve as a consensus partition.The Silhouette width should be used for selecting the optimal Minkowski exponent. The Minkowski weighted K-means (MWK-means) is a recently developed clustering algorithm capable of computing feature weights. The cluster-specific weights in MWK-means follow the intuitive idea that a feature with low variance should have a greater weight than a feature with high variance. The final clustering found by this algorithm depends on the selection of the Minkowski distance exponent. This paper explores the possibility of using the central Minkowski partition in the ensemble of all Minkowski partitions for selecting an optimal value of the Minkowski exponent. The central Minkowski partition appears to be also a good consensus partition. Furthermore, we discovered some striking correlation results between the Minkowski profile, defined as a mapping of the Minkowski exponent values into the average similarity values of the optimal Minkowski partitions, and the Adjusted Rand Index vectors resulting from the comparison of the obtained partitions to the ground truth. Our findings were confirmed by a series of computational experiments involving synthetic Gaussian clusters and real-world data.

[1]  Mirkin Boris,et al.  Clustering: A Data Recovery Approach , 2012 .

[2]  Anil K. Jain,et al.  Combining multiple weak clusterings , 2003, Third IEEE International Conference on Data Mining.

[3]  Fan Yang,et al.  Exploring the diversity in cluster ensemble generation: Random sampling and random projection , 2014, Expert Syst. Appl..

[4]  Peter Komisarczuk,et al.  On Initializations for the Minkowski Weighted K-Means , 2012, IDA.

[5]  Ludmila I. Kuncheva,et al.  Evaluation of Stability of k-Means Cluster Ensembles with Respect to Random Initialization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Mark J. van der Laan,et al.  A Method to Identify Significant Clusters in Gene Expression Data , 2002 .

[7]  Michael K. Ng,et al.  An optimization algorithm for clustering using weighted dissimilarity measures , 2004, Pattern Recognit..

[8]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[9]  Milton Pividori,et al.  Diversity control for improving the analysis of consensus clustering , 2016, Inf. Sci..

[10]  Olatz Arbelaitz,et al.  An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..

[11]  Chunguang Zhou,et al.  An improved k-prototypes clustering algorithm for mixed numeric and categorical data , 2013, Neurocomputing.

[12]  Giorgio Valentini,et al.  Discovering multi–level structures in bio-molecular data through the Bernstein inequality , 2008, BMC Bioinformatics.

[13]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[14]  Andy P. Field,et al.  Discovering Statistics Using SPSS , 2000 .

[15]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[16]  M. Cugmas,et al.  On comparing partitions , 2015 .

[17]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[18]  D. Steinley Profiling local optima in K-means clustering: developing a diagnostic technique. , 2006, Psychological methods.

[19]  Renato Cordeiro de Amorim,et al.  Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering , 2012, Pattern Recognit..

[20]  Michael K. Ng,et al.  Automated variable weighting in k-means type clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Yunming Ye,et al.  Weighting Method for Feature Selection in K-Means , 2007 .

[22]  Cordeiro de AmorimRenato,et al.  Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering , 2012 .

[23]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[24]  Andrey Shestakov,et al.  A Note on the Effectiveness of the Least Squares Consensus Clustering , 2014 .

[25]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[26]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[27]  Douglas Steinley,et al.  K-means clustering: a half-century synthesis. , 2006, The British journal of mathematical and statistical psychology.

[28]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[29]  Vladimir Makarenkov,et al.  Optimal Variable Weighting for Ultrametric and Additive Trees and K-means Partitioning: Methods and Software , 2001, J. Classif..

[30]  Christian Hennig,et al.  Recovering the number of clusters in data sets with noise features using feature rescaling factors , 2015, Inf. Sci..

[31]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[32]  Ulrike von Luxburg,et al.  Clustering Stability: An Overview , 2010, Found. Trends Mach. Learn..

[33]  Renato Cordeiro de Amorim,et al.  A Survey on Feature Weighting Based K-Means Algorithms , 2015, Journal of Classification.

[34]  Ludmila I. Kuncheva,et al.  Moderate diversity for better cluster ensembles , 2006, Inf. Fusion.

[35]  Chang-Dong Wang,et al.  Ensemble clustering using factor graph , 2016, Pattern Recognit..

[36]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[37]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .