A bilevel optimization approach to automated parameter tuning

Many of the modern optimization algorithms contain a number of parameters that require tuning before the algorithm can be applied to a particular class of optimization problems. A proper choice of parameters may have a substantial effect on the accuracy and efficiency of the algorithm. Until recently, parameter tuning has mostly been performed using brute force strategies, such as grid search and random search. Guesses and insights about the algorithm are also used to find suitable parameters or suggest strategies to adjust them. More recent trends include the use of meta-optimization techniques. Most of these approaches are computationally expensive and do not scale when the number of parameters increases. In this paper, we propose that the parameter tuning problem is inherently a bilevel programming problem. Based on this insight, we introduce an evolutionary bilevel algorithm for parameter tuning. A few commonly used optimization algorithms (Differential Evolution and Nelder-Mead) have been chosen as test cases, whose parameters are tuned on a number of standard test problems. The bilevel approach is found to quickly converge towards the region of efficient parameters. The code for the proposed algorithm can be accessed from the website http://bilevel.org.

[1]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[2]  Tiesong Hu,et al.  An Improved Particle Swarm Optimization for Solving Bilevel Multiobjective Programming Problem , 2012, J. Appl. Math..

[3]  Robert E. Mercer,et al.  ADAPTIVE SEARCH USING A REPRODUCTIVE META‐PLAN , 1978 .

[4]  G. Anandalingam,et al.  Genetic algorithm based approach to bi-level linear programming , 1994 .

[5]  Zhongping Wan,et al.  Genetic algorithm based on simplex method for solving linear-quadratic bilevel programming problem , 2008, Comput. Math. Appl..

[6]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[7]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Yuping Wang,et al.  A Genetic Algorithm for Solving a Special Class of Nonlinear Bilevel Programming Problems , 2007, International Conference on Conceptual Structures.

[9]  Kalyanmoy Deb,et al.  Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm , 2013, Comput. Oper. Res..

[10]  J. Herskovits,et al.  Contact shape optimization: a bilevel programming approach , 2000 .

[11]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[12]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[13]  Hecheng Li,et al.  An Evolutionary Algorithm with Local Search for Convex Quadratic Bilevel Programming Problems , 2011 .

[14]  Lucio Bianco,et al.  A Bilevel flow model for HazMat transportation network design , 2008 .

[15]  Yuping Wang,et al.  A New Evolutionary Algorithm for a Class of Nonlinear Bilevel Programming Problems and Its Global Convergence , 2011, INFORMS J. Comput..

[16]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[17]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[18]  Kalyanmoy Deb,et al.  Efficient Evolutionary Algorithm for Single-Objective Bilevel Optimization , 2013, ArXiv.

[19]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[20]  Aravind Srinivasan,et al.  A Population-Based, Parent Centric Procedure for Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[21]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[22]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[23]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[24]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[25]  Barry L. Nelson,et al.  A fully sequential procedure for indifference-zone selection in simulation , 2001, TOMC.

[26]  Yafeng Yin,et al.  Genetic-Algorithms-Based Approach for Bilevel Programming Models , 2000 .

[27]  Edwin R. Hancock,et al.  Empirical Modelling of Genetic Algorithms , 2001, Evolutionary Computation.

[28]  Yuping Wang,et al.  An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[29]  Rajkumar Roy,et al.  Bi-level optimisation using genetic algorithm , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[30]  Helio J. C. Barbosa,et al.  Differential evolution for bilevel programming , 2013, 2013 IEEE Congress on Evolutionary Computation.

[31]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[32]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[33]  Jürgen Branke,et al.  New developments in ranking and selection: an empirical comparison of the three main approaches , 2005, Proceedings of the Winter Simulation Conference, 2005..

[34]  Sanaz Mostaghim,et al.  Bilevel Optimization of Multi-Component Chemical Systems Using Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[35]  Xinping Shi,et al.  Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers , 2001 .

[36]  Kalyanmoy Deb,et al.  Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm , 2009 .

[37]  Adrião Duarte Dória Neto,et al.  Logistic regression for parameter tuning on an evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[38]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[39]  Kalyanmoy Deb,et al.  An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm , 2010, Evolutionary Computation.

[40]  Yuping Wang,et al.  A Hybrid Genetic Algorithm for Solving Nonlinear Bilevel Programming Problems Based on the Simplex Method , 2007, Third International Conference on Natural Computation (ICNC 2007).

[41]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[42]  Eitaro Aiyoshi,et al.  HIERARCHICAL DECENTRALIZED SYSTEM AND ITS NEW SOLUTION BY A BARRIER METHOD. , 1980 .

[43]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[44]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[45]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[46]  Kaisa Miettinen,et al.  Constructing evolutionary algorithms for bilevel multiobjective optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[47]  Arnaud Liefooghe,et al.  CoBRA: A cooperative coevolutionary algorithm for bi-level optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.