Quantum-dot infrared photodetectors: a review

Quantum-dot infrared photodetectors (QDIPs) are positioned to become an important technology in the field of infrared (IR) detection, particularly for high-temperature, low-cost, high-yield detector arrays required for military applications. High-operating temperature (150 K) photodetectors reduce the cost of IR imaging systems by enabling cryogenic dewars and Stirling cooling systems to be replaced by thermo-electric coolers. QDIPs are well-suited for detecting mid-IR light at elevated temperatures, an application that could prove to be the next commercial market for quantum dots. While quantum dot epitaxial growth and intraband absorption of IR radiation are well established, quantum dot non-uniformity remains as a significant challenge. Nonetheless, state-of-the-art mid-IR detection at 150 K has been demonstrated using 70-layer InAs/GaAs QDIPs, and QDIP focal plane arrays are approaching performance comparable to HgCdTe at 77 K. By addressing critical challenges inherent to epitaxial QD material systems (e.g., controlling dopant incorporation), exploring alternative QD systems (e.g., colloidal QDs), and using bandgap engineering to reduce dark current and enhance multi-spectral detection (e.g. resonant tunneling QDIPs), the performance and applicability of QDIPs will continue to improve.

[1]  Yia-Chung Chang,et al.  Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array☆ , 2007 .

[2]  Jasprit Singh,et al.  Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study , 1997 .

[3]  Yuansha Chen,et al.  Intraband absorption in the 8–12 μm band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlattice , 1998 .

[4]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[5]  Akio Sasaki,et al.  Strain energy and critical thickness of heteroepitaxial InGaAs layers on GaAs substrate , 1991 .

[6]  J. Brault,et al.  Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001) , 1999 .

[7]  P. Bhattacharya,et al.  Self-organized growth of In(Ga)As/GaAs quantum dots and their opto-electronic device applications , 1999 .

[8]  S. Chakrabarti,et al.  Contribution of field-assisted tunneling emission to dark current in InAs-GaAs quantum dot infrared photodetectors , 2004, IEEE Photonics Technology Letters.

[9]  Joe C. Campbell,et al.  High detectivity InAs quantum dot infrared photodetectors , 2004 .

[10]  A. Madhukar,et al.  Optical and Photocurrent Spectroscopy Studies of Inter- and Intra-Band Transitions in Size-Tailored InAs/GaAs Quantum Dots , 2001 .

[11]  J. Scott Tyo,et al.  Spectrally adaptive infrared photodetectors with bias-tunable quantum dots , 2004 .

[12]  Anupam Madhukar,et al.  Normal-incidence voltage-tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots , 2002 .

[13]  Subhananda Chakrabarti,et al.  Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors , 2002 .

[14]  E. F. Schubert,et al.  Doping in III-V Semiconductors , 1993 .

[15]  C. H. Wang,et al.  Characteristics of InGaAs quantum dot infrared photodetectors , 1998 .

[16]  Paul R. Berger,et al.  A study of strain‐related effects in the molecular‐beam epitaxy growth of InxGa1−xAs on GaAs using reflection high‐energy electron diffraction , 1987 .

[17]  Andreas Stintz,et al.  Influence of Si doping on the performance of quantum dots-in-well photodetectors , 2006 .

[18]  Andreas Stintz,et al.  Two color InAs/InGaAs dots-in-a-well detector with background-limited performance at 91 K , 2003 .

[19]  Subhananda Chakrabarti,et al.  Quantum dot infrared photodetector design based on double-barrier resonant tunnelling , 2004 .

[20]  Jasprit Singh,et al.  Physics of Semiconductors and Their Heterostructures , 1992 .

[21]  D. Wasserman,et al.  DX-like centers in InAs∕GaAs QDIPs observed by polarization-dependent Fourier transform infrared spectroscopy , 2007 .

[22]  Tymish Y. Ohulchanskyy,et al.  Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites , 2005 .

[23]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[24]  Shiang-Feng Tang,et al.  Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector , 2001 .

[25]  H. Liu,et al.  Quantum dot infrared photodetectors , 2003 .

[26]  J. C. Bourgoin,et al.  DETECTION OF THE METASTABLE STATE OF THE EL2 DEFECT IN GAAS , 1997 .

[27]  A. Yakimov,et al.  Interlevel Ge/Si quantum dot infrared photodetector , 2001 .

[28]  Joon Ho Oum,et al.  A Study on Doping Density in InAs/GaAs Quantum Dot Infrared Photodetector , 2004 .

[29]  Mooney,et al.  Electron localization by a metastable donor level in n-GaAs: A new mechanism limiting the free-carrier density. , 1988, Physical review letters.

[30]  Pallab Bhattacharya,et al.  High-performance mid-infrared quantum dot infrared photodetectors , 2005 .

[31]  Victor Ryzhii,et al.  The theory of quantum-dot infrared phototransistors , 1996 .

[32]  Kang L. Wang,et al.  INTERSUBBAND ABSORPTION IN BORON-DOPED MULTIPLE GE QUANTUM DOTS , 1999 .

[33]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[34]  Si-Chen Lee,et al.  High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array , 2006, IEEE Photonics Technology Letters.

[35]  Jean-Michel Gérard,et al.  Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots , 1997 .

[36]  Ewa M. Goldys,et al.  Doping effect on dark currents in In0.5Ga0.5As∕GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition , 2006 .

[37]  M. Asche,et al.  DX− center formation in planar-doped GaAs:Si in strong electric fields , 2004 .

[38]  G. Ariyawansa,et al.  A resonant tunneling quantum-dot infrared photodetector , 2005, IEEE Journal of Quantum Electronics.

[39]  E. Towe,et al.  Uniformly doped InAs∕GaAs quantum-dot infrared photodetector structures , 2005 .

[40]  Jamie D. Phillips,et al.  Photoluminescence and far-infrared absorption in Si-doped self-organized InAs quantum dots , 1997 .

[41]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[42]  S. Krishna,et al.  640$\,\times\,$512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array , 2007, IEEE Journal of Quantum Electronics.

[43]  C. Yi,et al.  Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy , 2007 .

[44]  N. Ledentsov,et al.  Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots , 1998 .

[45]  Neil C. Greenham,et al.  PHOTOINDUCED ELECTRON TRANSFER FROM CONJUGATED POLYMERS TO CDSE NANOCRYSTALS , 1999 .

[46]  Meimei Z. Tidrow,et al.  High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition , 2004 .

[47]  Tae-Kyung Yoo,et al.  Room temperature far infrared (8/spl sim/10 μm) photodetectors using self-assembled InAs quantum dots with high detectivity , 2000 .

[48]  E. Yoon,et al.  Optical properties of Si-doped InAs/InP quantum dots , 2003 .

[49]  G. Abstreiter,et al.  Mid-infrared photocurrent measurements on self-assembled Ge dots in Si , 2000 .

[50]  Yong Hoon Kang,et al.  Effect of the dot size distribution on quantum dot infrared photoresponse and temperature-dependent dark current , 2003 .

[51]  Vladimir Bulovic,et al.  Photodetectors based on treated CdSe quantum-dot films , 2005 .

[52]  P. Bhattacharya,et al.  Wavelength and polarization selective multi-band tunnelling quantum dot detectors , 2007 .

[53]  G. Ariyawansa,et al.  Characteristics of a multicolor InGaAs-GaAs quantum-dot infrared photodetector , 2005, IEEE Photonics Technology Letters.

[54]  Kang L. Wang,et al.  Observation of inter-sub-level transitions in modulation-doped Ge quantum dots , 1999 .

[55]  Marija Drndic,et al.  Efficient polymer-nanocrystal quantum-dot photodetectors , 2005 .

[56]  A. G. U. Perera,et al.  Terahertz detection with tunneling quantum dot intersublevel photodetector , 2006 .

[57]  P. Klang,et al.  InAs/AlGaAs QDs for intersubband devices , 2008 .

[58]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[59]  D. Wasserman,et al.  Probing dopant incorporation in InAs/GaAs QDIPs by polarization-dependent Fourier transform infrared spectroscopy , 2007 .

[60]  Jamie D. Phillips,et al.  Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .

[61]  Moungi G. Bawendi,et al.  Photoconductivity in CdSe quantum dot solids , 2000 .

[62]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[63]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[64]  G. Strasser,et al.  In-based quantum dots on AlxGa1-xAs surfaces , 2007 .

[65]  Dong Pan,et al.  Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice , 1996 .

[66]  E. Sargent,et al.  Photoconductivity from PbS-nanocrystal∕semiconducting polymer composites for solution-processible, quantum-size tunableinfrared photodetectors , 2004 .

[67]  Subhananda Chakrabarti,et al.  Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature , 2005 .

[68]  Sanjay Krishna,et al.  Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector , 2001 .

[69]  Meimei Z. Tidrow,et al.  Demonstration of a 256×256 middle-wavelength infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors , 2004 .

[70]  Naoto Horiguchi,et al.  Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled Quantum Dots , 1999 .

[71]  Cheewee Liu,et al.  δ-Doped MOS Ge/Si quantum dot/well infrared photodetector , 2006 .

[72]  Wei Zhang,et al.  High-detectivity quantum-dot infrared photodetectors grown by metalorganic chemical-vapor deposition , 2006 .

[73]  Gerhard Abstreiter,et al.  Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dots , 1999 .

[74]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[75]  A. Yakimov,et al.  Normal-incidence infrared photoconductivity in Si p-i-n diode with embedded Ge self-assembled quantum dots , 1999 .

[76]  Sanjay Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[77]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[78]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[79]  A. Madhukar,et al.  Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1−xAs strain-relieving quantum wells , 2001 .

[80]  Joe C. Campbell,et al.  Normal incidence InAs/AlxGa1−xAs quantum dot infrared photodetectors with undoped active region , 2001 .

[81]  Sanjay Krishna,et al.  Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector , 2008 .

[82]  B. Rodriguez,et al.  Doping Characterization of InAs/GaAs Quantum Dot Heterostructure by Cross-Sectional Scanning Capacitance Microscopy , 2007, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[83]  Pallab Bhattacharya,et al.  Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime , 1988 .

[84]  T. N. Morgan The DX centre , 1991 .

[85]  Manijeh Razeghi,et al.  High performance InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD , 2005, SPIE OPTO.

[86]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[87]  Elias Towe,et al.  Photovoltaic quantum-dot infrared detectors , 2000 .

[88]  G. Vincent,et al.  Photoelectric memory effect in GaAs , 1982 .

[89]  Jasprit Singh,et al.  Electronic and Optoelectronic Properties of Semiconductor Structures , 2007 .

[90]  A. Alivisatos,et al.  Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity* , 1997 .

[91]  Anupam Madhukar,et al.  Realization of optically active strained InAs island quantum boxes on GaAs(100) via molecular beam epitaxy and the role of island induced strain fields , 1995 .

[92]  S.B. Rafol,et al.  High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity , 2004, IEEE Photonics Technology Letters.

[93]  Pallab Bhattacharya,et al.  High-Temperature Tunneling Quantum-Dot Intersublevel Detectors for Mid-Infrared to Terahertz Frequencies , 2007, Proceedings of the IEEE.

[94]  Hooman Mohseni,et al.  Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector , 1998 .

[95]  Subhananda Chakrabarti,et al.  Multi-color tunneling quantum dot infrared photodetectors operating at room temperature , 2007 .