Metal-doped carbon xerogels for the electro-catalytic conversion of CO2 to hydrocarbons

[1]  F. J. Maldonado-Hódar,et al.  Chemical control of the characteristics of Mo-doped carbon xerogels by surfactant-mediated synthesis , 2013 .

[2]  E. Morallón,et al.  Electrochemical performance of carbon gels with variable surface chemistry and physics , 2012 .

[3]  Keith J. Stevenson The origin, development, and future of the lithium-ion battery , 2012, Journal of Solid State Electrochemistry.

[4]  F. J. Maldonado-Hódar,et al.  On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes , 2012 .

[5]  Ahmed M. Elkhatat,et al.  Advances in Tailoring Resorcinol‐Formaldehyde Organic and Carbon Gels , 2011, Advances in Materials.

[6]  F. J. Maldonado-Hódar,et al.  Design of low-temperature Pt-carbon combustion catalysts for VOC's treatments. , 2010, Journal of hazardous materials.

[7]  Siglinda Perathoner,et al.  Problems and perspectives in nanostructured carbon-based electrodes for clean and sustainable energy , 2010 .

[8]  C. Pham‐Huu,et al.  Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates , 2009 .

[9]  L. Madeira,et al.  Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels , 2009 .

[10]  F. Carrasco-Marín,et al.  Surface chemistry, porous texture, and morphology of N-doped carbon xerogels. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[11]  J. Moulijn,et al.  Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes , 2008 .

[12]  Michael R. Thompson,et al.  Basic Research Needs: Catalysis for Energy , 2008 .

[13]  F. J. Maldonado-Hódar,et al.  Reversible toluene adsorption on monolithic carbon aerogels. , 2007, Journal of hazardous materials.

[14]  Siglinda Perathoner,et al.  Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons , 2007 .

[15]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[16]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[17]  F. J. Maldonado-Hódar,et al.  Carbon aerogels for catalysis applications: An overview , 2005 .

[18]  F. J. Maldonado-Hódar,et al.  Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives , 2004 .

[19]  G. Centi,et al.  Heterogeneous Catalytic Reactions with CO2: Status and Perspectives , 2004 .

[20]  A. Wragg,et al.  Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation , 2003 .

[21]  F. J. Maldonado-Hódar,et al.  Physicochemical Surface Properties of Fe, Co, Ni, and Cu-Doped Monolithic Organic Aerogels , 2003 .

[22]  N. Sonoyama,et al.  Temperature Dependence of the Probability of Chain Growth for Hydrocarbon Formation by Electrochemical Reduction of CO2 , 2001 .

[23]  F. J. Maldonado-Hódar,et al.  Catalytic graphitization of carbon aerogels by transition metals , 2000 .

[24]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[25]  A. Sammells,et al.  Fischer‐Tropsch Electrochemical CO 2 Reduction to Fuels and Chemicals , 1994 .

[26]  R. Pekala,et al.  Aerogels derived from multifunctional organic monomers , 1992 .

[27]  Akira Murata,et al.  Electrochemical evidence of intermediate formation of adsorbed CO in cathodic reduction of CO2 at a nickel electrode , 1990 .