A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

Abstract During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical–empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.

[1]  W. Dorigo,et al.  A LUT APPROACH FOR BIOPHYSICAL PARAMETER RETRIEVAL BY RT MODEL INVERSION APPLIED TO WIDE FIELD OF VIEW DATA , 2005 .

[2]  Louise van Leeuwen,et al.  Mapping crop key phenological stages in the North China Plain using NOAA time series images , 2002 .

[3]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[4]  J. Hill,et al.  Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics , 2005 .

[5]  S. Ustin,et al.  Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data , 1996 .

[6]  E. R. Stoner,et al.  REFLECTANCE PROPERTIES OF SOILS , 1986 .

[7]  F. Baret,et al.  Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems , 1996 .

[8]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[9]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[10]  S. Ciavatta,et al.  The Extended Kalman Filter (EKF) as a tool for the assimilation of high frequency water quality data , 2003 .

[11]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[12]  W. J. Shuttleworth,et al.  Integration of soil moisture remote sensing and hydrologic modeling using data assimilation , 1998 .

[13]  F. Kogan,et al.  Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices , 2002 .

[14]  Daniel Wallach,et al.  Parameter Estimation for Crop Models , 2001 .

[15]  Bruno Andrieu,et al.  The nested radiosity model for the distribution of light within plant canopies , 1998 .

[16]  Gilles Lemaire,et al.  Diagnosis of the Nitrogen Status in Crops , 1997, Springer Berlin Heidelberg.

[17]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[18]  Jean-Philippe Gastellu-Etchegorry,et al.  A modeling approach to assess the robustness of spectrometric predictive equations for canopy chemistry , 2001 .

[19]  S. Ustin,et al.  Three-dimensional radiation transfer modeling in a dicotyledon leaf. , 1996, Applied optics.

[20]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[21]  Huang Wenjiang,et al.  Methods and application of remote sensing to forecast wheat grain quality , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Sylvain G. Leblanc,et al.  A four-scale bidirectional reflectance model based on canopy architecture , 1997, IEEE Trans. Geosci. Remote. Sens..

[23]  G. F. Arkin,et al.  Remotely-sensed spectral indicators of sorghum development and their use in growth modeling , 1982 .

[24]  W. Lüdeker,et al.  SLOP: A Revised Version of the Stochastic Model for Leaf Optical Properties , 1999 .

[25]  M. Guérif,et al.  Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications , 2005 .

[26]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  Y. Knyazikhin,et al.  Stochastic Modeling of Radiation Regime in Discontinuous Vegetation Canopies , 2000 .

[28]  A. K. Skidmore,et al.  Derivation of the red edge index using the MERIS standard band setting , 2002 .

[29]  George Z. Gertner,et al.  A framework for uncertainty assessment of mechanistic forest growth models: a neural network example , 1997 .

[30]  Jan G. P. W. Clevers,et al.  A simplified approach for yield prediction of sugar beet based on optical remote sensing data , 1997 .

[31]  Y. Zha,et al.  INTEGRATING REMOTELY SENSED DATA WITH AN ECOSYSTEM MODEL TO ESTIMATE CROP YIELD IN NORTH CHINA , 2004 .

[32]  A. Skidmore,et al.  Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features , 2004 .

[33]  David P. Anderson,et al.  BOINC: a system for public-resource computing and storage , 2004, Fifth IEEE/ACM International Workshop on Grid Computing.

[34]  B. Turner,et al.  Estimating foliage nitrogen concentration from HYMAP data using continuum, removal analysis , 2004 .

[35]  Millenium Ecosystem Assessment Ecosystems and human well-being: synthesis , 2005 .

[36]  J. Peñuelas,et al.  Estimation of plant water concentration by the reflectance Water Index WI (R900/R970) , 1997 .

[37]  Robert Faivre,et al.  Spatialising crop models , 2004 .

[38]  Richard L. Thompson,et al.  A snapshot of canopy reflectance models and a universal model for the radiation regime , 2000 .

[39]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[40]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[41]  R. Myneni,et al.  A Three-Dimensional Radiative Transfer Method for Optical Remote Sensing of Vegetated Land Surfaces , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[42]  A. Kuusk A fast, invertible canopy reflectance model , 1995 .

[43]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[44]  M. Guérif,et al.  Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation , 2000 .

[45]  W. Verhoef,et al.  Reconstructing cloudfree NDVI composites using Fourier analysis of time series , 2000 .

[46]  K. Itten,et al.  Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties , 2004 .

[47]  Edward T. Elliott,et al.  A Perspective on Agroecosystem Science , 1989 .

[48]  Dennis McLaughlin,et al.  An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering , 2002 .

[49]  Gérard Dedieu,et al.  Temporal variations in satellite reflectances at field and regional scales compared with values simulated by linking crop growth and SAIL models , 1995 .

[50]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[51]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[52]  Arnon Karnieli,et al.  Natural vegetation phenology assessment by ground spectral measurements in two semi-arid environments , 2003, International journal of biometeorology.

[53]  S.A.W. Gerstl,et al.  Principles Of The Radiosity Method For Canopy Reflectance Modeling , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[54]  Lu Su,et al.  Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase , 2004 .

[55]  Chuck Hansen,et al.  Eurographics '97 , 1998, COMG.

[56]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .

[57]  W. Crow,et al.  The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97 , 2003 .

[58]  T. Faurtyot Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study , 1997 .

[59]  Darrel L. Williams,et al.  Landsat and Earth Systems Science : Development of terrestrial monitoring , 1997 .

[60]  B. Bouman,et al.  Crop modelling and remote sensing for yield prediction , 1995 .

[61]  Frédéric Baret,et al.  Radiometric Estimates of Nitrogen Status of Leaves and Canopies , 1997 .

[62]  S. Tarantola,et al.  Detecting vegetation leaf water content using reflectance in the optical domain , 2001 .

[63]  A. Kuusk A Markov chain model of canopy reflectance , 1995 .

[64]  C. Tucker,et al.  Satellite remote sensing of total dry matter production in the Senegalese Sahel , 1983 .

[65]  W. Verhoef,et al.  Remote sensing data assimilation using coupled radiative transfer models , 2003 .

[66]  S. Running,et al.  MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product , 1999 .

[67]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[68]  Jerzy Cierniewski,et al.  Influence of soil surface roughness on soil bidirectional reflectance , 1997 .

[69]  D. Aubert,et al.  Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model , 2003 .

[70]  M. Weiss,et al.  Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data , 2002 .

[71]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[72]  F. R. Schiebe,et al.  Canopy attributes of desert grassland and transition communities derived from multiangular airborne imagery , 2003 .

[73]  Marcos J. Montes,et al.  Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique , 2004 .

[74]  Z. Zlatev,et al.  Computational Challenges in the Numerical Treatment of Large Air Pollution Models , 2001 .

[75]  Mark W. Rosegrant,et al.  World food prospects. , 1999 .

[76]  Jetse D. Kalma,et al.  One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: a comparison of retrieval algorithms , 2001 .

[77]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[78]  F. J. García-Haro,et al.  Airborne measurement of hot spot reflectance signatures , 2004 .

[79]  M. S. Moran,et al.  Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index , 1994 .

[80]  Frédéric Baret,et al.  Crop biomass evaluation using radiometric measurements , 1989 .

[81]  F. Baret,et al.  Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model , 2005 .

[82]  L. D. Miller,et al.  Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado , 1972 .

[83]  Toby Grier,et al.  A model for radiative transfer in heterogeneous three-dimensional canopies , 1988 .

[84]  G. Andreoli,et al.  Investigation of leaf biochemistry by statistics , 1995 .

[85]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[86]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[87]  N. Gobron,et al.  Designing optimal spectral indices: A feasibility and proof of concept study , 1999 .

[88]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[89]  K. Huemmrich The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance , 2001 .

[90]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[91]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[92]  F. Baret,et al.  Modeling Spectral and Bidirectional Soil Reflectance , 1992 .

[93]  Nadine Gobron,et al.  Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications , 2000, IEEE Trans. Geosci. Remote. Sens..

[94]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[95]  J. Clevers Application of a weighted infrared-red vegetation index for estimating leaf Area Index by Correcting for Soil Moisture , 1989 .

[96]  J. Passioura Simulation Models: Science, Snake Oil, Education, or Engineering? , 1996 .

[97]  C. Justice,et al.  Development of vegetation and soil indices for MODIS-EOS , 1994 .

[98]  Wolfram Mauser,et al.  Methods and examples for remote sensing data assimilation in land surface process modeling , 2003, IEEE Trans. Geosci. Remote. Sens..

[99]  N. Broge,et al.  Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data , 2002 .

[100]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[101]  Herman H. Goldstine,et al.  Preliminary discussion of the logical design of an electronic computing instrument (1946) , 1989 .

[102]  Allard de Wit,et al.  Application of a genetic algorithm for crop model steering using NOAA-AVHRR data , 1999 .

[103]  Charlotte Bay Hasager,et al.  Incorporating remote sensing data in physically based distributed agro-hydrological modelling , 2004 .

[104]  Shunlin Liang Estimation of Land Surface Biophysical Variables , 2005 .

[105]  S. Ustin,et al.  LEAF OPTICAL PROPERTIES: A STATE OF THE ART , 2000 .

[106]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[107]  Stephan J. Maas,et al.  Using Satellite Data to Improve Model Estimates of Crop Yield , 1988 .

[108]  S. Liang,et al.  Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model , 2003 .

[109]  David Makowski,et al.  Bayesian methods for updating crop-model predictions, applications for predicting biomass and grain protein content , 2004 .

[110]  Christoph C. Borel,et al.  The radiosity method in optical remote sensing of structured 3-D surfaces , 1991 .

[111]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[112]  P. C. Doraiswamya,et al.  Crop condition and yield simulations using Landsat and MODIS , 2004 .

[113]  C. Bacour Design and analysis of numerical experiments to compare four canopy reflectance models , 2002 .

[114]  Moon S. Kim,et al.  The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par) , 1994 .

[115]  M. M. Artigao,et al.  Estimating Maize (Zea mays) cvapotranspiration from NOAA-AVHRR thermal data in the Albacete area, Spain , 1994 .

[116]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[117]  John R. Miller,et al.  Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model , 1990 .

[118]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[119]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[120]  A. Bondeau,et al.  Combining agricultural crop models and satellite observations: from field to regional scales , 1998 .

[121]  Ping Wang,et al.  MODTRAN on supercomputers and parallel computers , 2002, Parallel Comput..

[122]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[123]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[124]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[125]  Paul E. Lewis,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Defense + Commercial Sensing.

[126]  V. Demarez,et al.  Modeling radiative transfer in heterogeneous 3D vegetation canopies , 1995, Remote Sensing.

[127]  S. Jacquemoud,et al.  Leaf BRDF measurements and model for specular and diffuse components differentiation , 2005 .

[128]  G. Boulet,et al.  A methodology to test the pertinence of remote-sensing data assimilation into vegetation models for water and energy exchange at the land surface , 2004 .

[129]  F. Baret,et al.  TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[130]  M. Rienecker,et al.  Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model , 2002 .

[131]  T. Richter,et al.  Optics of a Bifacial Leaf: 1. A Novel Combined Procedure for Deriving the Optical Parameters , 1996 .

[132]  D. Tilman,et al.  Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Clement Atzberger,et al.  Retrieval of wheat bio - physical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model , 2003 .

[134]  W. Bastiaanssen Remote sensing in water resources management: the state of the art. , 1998 .

[135]  P. Curran Remote sensing of foliar chemistry , 1989 .

[136]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[137]  Jean-Pierre Wigneron,et al.  Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models , 1999 .

[138]  Jens Nieke,et al.  Cluster versus grid for large-volume hyperspectral image preprocessing , 2004, SPIE Optics + Photonics.

[139]  M. S. Moran,et al.  Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets , 2001 .

[140]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[141]  W. Gao,et al.  Inverting optical reflectance to estimate surface properties of vegetation canopies , 1998 .

[142]  Michel M. Verstraete,et al.  Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media , 1998, IEEE Trans. Geosci. Remote. Sens..

[143]  Leonard A. Smith,et al.  Uncertainty in predictions of the climate response to rising levels of greenhouse gases , 2005, Nature.

[144]  Frédéric Baret,et al.  Characterizing the spatial and temporal variability of biophysical variables of a wheat crop using hyper-spectral measurements , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[145]  Jean-Philippe Gastellu-Etchegorry,et al.  An interpolation procedure for generalizing a look-up table inversion method , 2003 .

[146]  Michael E. Schaepman,et al.  Spectrodirectional remote sensing: From pixels to processes , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[147]  B. Gardner,et al.  Causes of rural economic development , 2005 .

[148]  Stephan J. Maas,et al.  Remote sensing and crop production models: present trends , 1992 .

[149]  Moon S. Kim,et al.  Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves , 1992 .

[150]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[151]  B. Hapke,et al.  Bidirectional reflectance spectroscopy. I - Theory. [of planetary surfaces , 1981 .

[152]  David J. Harding,et al.  Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements , 2001 .

[153]  Mario Putti,et al.  Newtonian nudging for a Richards equation-based distributed hydrological model , 2003 .

[154]  C. A. van Diepen,et al.  Spatial resolution of precipitation and radiation: The effect on regional crop yield forecasts , 2005 .

[155]  K. Itten,et al.  Spectrodirectional remote sensing for the improved estimation of biophysical and -chemical variables: two case studies , 2005 .

[156]  Jon G. Rokne,et al.  An Algorithmic Reflectance and Transmittance Model for Plant Tissue , 1997, Comput. Graph. Forum.

[157]  L Fukshansky,et al.  Estimation of optical parameters in a living tissue by solving the inverse problem of the multiflux radiative transfer. , 1991, Applied optics.

[158]  X. Moa,et al.  Prediction of crop yield , water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain , 2005 .

[159]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[160]  R. Person Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado , 1972 .

[161]  W. Bastiaanssen,et al.  A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan , 2003 .

[162]  D. Peden,et al.  Agroecosystem management for improved human health : applying principles of integrated pest management to people , 1998 .

[163]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[164]  Blaine L. Blad,et al.  Evaluation of spectral reflectance models to estimate corn leaf area while minimizing the influence of soil background effects , 1986 .

[165]  A. J. Richardson,et al.  Distinguishing vegetation from soil background information. [by gray mapping of Landsat MSS data] , 1977 .

[166]  Nadine Gobron,et al.  Radiation transfer model intercomparison (RAMI) exercise , 2001 .

[167]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[168]  J. Qi,et al.  Identification of red and NIR spectral regions and vegetative indices for discrimination of cotton nitrogen stress and growth stage , 2005 .

[169]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[170]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[171]  Frédéric Baret,et al.  Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands , 1992 .

[172]  P.J. Zarco-Tejada,et al.  Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[173]  S. Wood,et al.  Pilot analysis of global ecosystems: Agroecosystems , 2000 .

[174]  Luc T. Wille,et al.  Parallelization of an ecological landscape model by functional decomposition , 2001 .

[175]  J. Goudriaan,et al.  Monitoring rice reflectance at field level for estimating biomass and LAI , 1998 .

[176]  Mary E. Martin,et al.  Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared reflectance : a comparison of statistical methods , 1996 .

[177]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[178]  James W. Jones,et al.  POTENTIAL USES AND LIMITATIONS OF CROP MODELS , 1996 .

[179]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[180]  A. J. Richardson,et al.  Vegetation indices in crop assessments , 1991 .