hp-discontinuous Galerkin time stepping for parabolic problems
暂无分享,去创建一个
Dominik Schötzau | Christoph Schwab | K. Gerdes | T. Werder | D. Schötzau | C. Schwab | K. Gerdes | T. Werder
[1] Timothy J. Barth,et al. High-order methods for computational physics , 1999 .
[2] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[3] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .
[4] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[5] Ivo Babuška,et al. On the Stability of the Discontinuous Galerkin Method for the Heat Equation , 1997 .
[6] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[7] T. Janik,et al. The h‐p version of the finite element method for parabolic equations. II. The h‐p version in time , 1990 .
[8] Bernardo Cockburn,et al. Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .
[9] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[10] Kenneth Eriksson,et al. Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .
[11] Jens Markus Melenk,et al. Analytic regularity for a singularly perturbed problem , 1999 .
[12] I. Babuska,et al. The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .
[13] I. Babuska,et al. Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .
[14] Ivo Babuška,et al. The h‐p version of the finite element method for parabolic equations. Part I. The p‐version in time , 1989 .
[15] Yusheng Feng,et al. Parallel Domain Decomposition Solver for Adaptive hp Finite Element Methods , 1997 .
[16] Wolfgang Fichtner,et al. Scalable Parallel Sparse Factorization with Left-Right Looking Strategy on Shared Memory Multoprocessors , 1999, HPCN Europe.
[17] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .
[18] J. Oden,et al. A discontinuous hp finite element method for convection—diffusion problems , 1999 .
[19] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[20] Dominik Schötzau,et al. hp-DGFEM for parabolic evolution problems , 1999 .
[21] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[22] Jens Markus Melenk,et al. hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .
[23] Dominik Schötzau. Abstract of the PhD thesis: “hp-DGFEM for parabolic evolution problems – applications to diffusion and viscous incompressible fluid flow” , 2000 .
[24] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .
[25] Leszek Demkowicz,et al. New Developments in Applications of hp-Adaptive BE/FE Methods to Elastic Scattering , 1994 .
[26] J. Whiteman. The Mathematics of Finite Elements and Applications. , 1983 .
[27] Dominik Schötzau,et al. An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .
[28] Kenneth Eriksson,et al. Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups , 1998 .
[29] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[30] Timothy Walsh,et al. HP90: A general and flexible Fortran 90 hp-FE code , 1998 .
[31] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[32] P. Lesaint. Finite element methods for the transport equation , 1974 .
[33] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[34] J. Whiteman. The Mathematics of Finite Elements and Applications II MAFELAP1975 , 1978 .
[35] Claes Johnson,et al. Error estimates and automatic time step control for nonlinear parabolic problems, I , 1987 .
[36] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[37] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[38] Wolfgang Fichtner,et al. Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .
[39] I. Babuska,et al. Finite Element Analysis , 2021 .
[40] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .