hp-discontinuous Galerkin time stepping for parabolic problems

Abstract We consider the hp-version of the discontinuous Galerkin (DG) time-stepping method for linear parabolic problems with non-symmetric elliptic spatial operators. We derive new analyticity estimates for the exact solutions by means of semigroup techniques. These estimates allow us to show that the hp-DG time-stepping method can resolve start-up singularities at exponential rates of convergence.

[1]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[2]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[3]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[4]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[5]  Ivo Babuška,et al.  On the Stability of the Discontinuous Galerkin Method for the Heat Equation , 1997 .

[6]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[7]  T. Janik,et al.  The h‐p version of the finite element method for parabolic equations. II. The h‐p version in time , 1990 .

[8]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[9]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[10]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[11]  Jens Markus Melenk,et al.  Analytic regularity for a singularly perturbed problem , 1999 .

[12]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[13]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[14]  Ivo Babuška,et al.  The h‐p version of the finite element method for parabolic equations. Part I. The p‐version in time , 1989 .

[15]  Yusheng Feng,et al.  Parallel Domain Decomposition Solver for Adaptive hp Finite Element Methods , 1997 .

[16]  Wolfgang Fichtner,et al.  Scalable Parallel Sparse Factorization with Left-Right Looking Strategy on Shared Memory Multoprocessors , 1999, HPCN Europe.

[17]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[18]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[19]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[20]  Dominik Schötzau,et al.  hp-DGFEM for parabolic evolution problems , 1999 .

[21]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[22]  Jens Markus Melenk,et al.  hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .

[23]  Dominik Schötzau Abstract of the PhD thesis: “hp-DGFEM for parabolic evolution problems – applications to diffusion and viscous incompressible fluid flow” , 2000 .

[24]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[25]  Leszek Demkowicz,et al.  New Developments in Applications of hp-Adaptive BE/FE Methods to Elastic Scattering , 1994 .

[26]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[27]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[28]  Kenneth Eriksson,et al.  Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups , 1998 .

[29]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[30]  Timothy Walsh,et al.  HP90: A general and flexible Fortran 90 hp-FE code , 1998 .

[31]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[32]  P. Lesaint Finite element methods for the transport equation , 1974 .

[33]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[34]  J. Whiteman The Mathematics of Finite Elements and Applications II MAFELAP1975 , 1978 .

[35]  Claes Johnson,et al.  Error estimates and automatic time step control for nonlinear parabolic problems, I , 1987 .

[36]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[37]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[38]  Wolfgang Fichtner,et al.  Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .

[39]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[40]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .