Exponentially small splitting of separatrices beyond Melnikov analysis: rigorous results

In this paper we study the problem of exponentially small splitting of separatrices of one degree of freedom classical Hamiltonian systems with a non-autonomous perturbation which is fast and periodic in time. We provide a result valid for general systems which are polynomials or trigonometric polynomials in the state variables. Our result consists in obtaining a rigorous proof of the asymptotic formula for the measure of the splitting. We have obtained that the splitting has the asymptotic behavior K" e−a/" identifying the constants K, and a in terms of the features of the system. The study of our problem leads us to consider several cases. In some cases, assuming the per- turbation is small enough, it turns out that the values of K, coincides with the classical Melnikov approach. We have identified the limit size of the perturbation for which this classical theory holds true. However for the limit cases, which appear naturally both in averaging theory and bifurcation theory, we encounter that, generically, neither K nor are actually well predicted by Melnikov theory.

[1]  Tere M. Seara,et al.  Exponentially Small Splitting for the Pendulum: A Classical Problem Revisited , 2010, J. Nonlinear Sci..

[2]  Exponentially small splitting of separatrices for perturbed integrable standard-like maps , 1997 .

[3]  V. G. Gelfreich Separatrices Splitting for the Rapidly Forced Pendulum , 1994 .

[4]  R. Martínez,et al.  Parabolic Orbits in the Elliptic restricted three-body problem , 1994 .

[5]  Russell M. Kulsrud,et al.  Adiabatic Invariant of the Harmonic Oscillator , 1957 .

[6]  Inmaculada Baldomá The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems , 2006 .

[7]  Jean-Pierre Marco,et al.  On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems , 2003 .

[8]  Ernest Fontich Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations , 1993 .

[9]  Carles Simó,et al.  Averaging under Fast Quasiperiodic Forcing , 1994 .

[10]  Tere M. Seara,et al.  Splitting of Separatrices in Hamiltonian Systems with one and a half Degrees of Freedom , 1997 .

[11]  Amadeu Delshams,et al.  Splitting Potential and the Poincaré-Melnikov Method for Whiskered Tori in Hamiltonian Systems , 2000, J. Nonlinear Sci..

[12]  Jerrold E. Marsden,et al.  Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations , 1988 .

[13]  Harvey Segur,et al.  Asymptotics beyond all orders in a model of crystal growth , 1991 .

[14]  Giovanni Gallavotti,et al.  Twistless KAM tori , 1993, chao-dyn/9306003.

[15]  Tere M. Seara,et al.  Exponentially Small Splitting of Separatrices Under Fast Quasiperiodic Forcing , 1997 .

[16]  Carme Olivé Farré Càlcul de l'escissió de separatrius usant tècniques de matching complex i ressurgència aplicades a l'equació de Hamilton-Jacobi , 2006 .

[17]  Tere M. Seara,et al.  Resurgence in a Hamilton-Jacobi equation , 2003 .

[18]  M. Alonso,et al.  Exponentially small splitting for whiskered tori in Hamiltonian systems: Flow-box coordinates and upper bounds , 2003 .

[19]  David Sauzin,et al.  A new method for measuring the splitting of invariant manifolds , 2001 .

[20]  Luigi Chierchia,et al.  Drift and diffusion in phase space , 1994 .

[21]  L. H. Eliasson,et al.  Biasymptotic solutions of perturbed integrable Hamiltonian systems , 1994 .

[22]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[23]  David Sauzin,et al.  Borel summation and splitting of separatrices for the Hénon map , 2001 .

[24]  Ernest Fontich,et al.  Exponentially Small Splitting of Invariant Manifolds of Parabolic Points , 2004 .

[25]  Tere M. Seara,et al.  Breakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singularity , 2006, J. Nonlinear Sci..

[26]  Jerrold E. Marsden,et al.  Exponentially Small Estimates for Separatrix Splittings , 1991 .

[27]  David Sauzin,et al.  Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé , 1995 .

[28]  Vassili Gelfreich,et al.  Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift–Hohenberg equation as an example , 2010, 1004.2054.

[29]  Sigurd B. Angenent,et al.  A variational interpretation of Melnikov's function and exponentially small separatrix splitting , 1994 .

[30]  Amadeu Delshams,et al.  Melnikov Potential for Exact Symplectic Maps , 1997 .

[31]  Vassili Gelfreich,et al.  Asymptotic series for the splitting of separatrices near a Hamiltonian bifurcation , 2008, 0806.2403.

[32]  V. F. Lazutkin,et al.  Splitting of Separatrices for the Chirikov Standard Map , 2005 .

[33]  V. Mastropietro,et al.  Pendulum: separatrix splitting , 1997, chao-dyn/9709004.

[34]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[35]  Bernold Fiedler,et al.  Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .

[36]  V. F. Lazutkin,et al.  Exponentially small splittings in Hamiltonian systems. , 1991, Chaos.

[37]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[38]  M. Alonso,et al.  RESURGENCE OF INNER SOLUTIONS FOR PERTURBATIONS OF THE MCMILLAN MAP , 2011 .

[39]  Giovanni Gallavotti,et al.  TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.

[40]  Martin Kummer,et al.  Transcendentally small transversality in the rapidly forced pendulum , 1993 .

[41]  Tere M. Seara,et al.  The inner equation for generic analytic unfoldings of the Hopf-zero singularity , 2008 .

[42]  V G Gelfreich Reference systems for splitting of separatrices , 1997 .

[43]  Ernest Fontich Rapidly Forced Planar Vector Fields and Splitting of Separatrices , 1995 .

[44]  V. G. Gelfreich,et al.  A Proof of the Exponentially Small Transversality of the Separatrices for the Standard Map , 1999 .

[45]  T. M. Seara,et al.  An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum , 1992 .

[46]  Carles Simó,et al.  Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps , 2009 .

[47]  Carles Simó,et al.  The splitting of separatrices for analytic diffeomorphisms , 1990, Ergodic Theory and Dynamical Systems.

[48]  Ernest Fontich,et al.  Exponentially small splitting of separatrices in a weakly hyperbolic case , 2005 .

[49]  T. M. Seara,et al.  Exponentially small splitting of separatrices in the perturbed McMillan map , 2011 .

[50]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[51]  Jaume Llibre,et al.  Oscillatory solutions in the planar restricted three-body problem , 1980 .

[52]  Tere M. Seara,et al.  Adiabatic invariant of the harmonic oscillator, complex matching and resurgence , 1998 .

[53]  Eric Lombardi,et al.  Oscillatory Integrals and Phenomena Beyond all Algebraic Orders: with Applications to Homoclinic Orbits in Reversible Systems , 2000 .

[54]  Amadeu Delshams,et al.  Singular Separatrix Splitting and the Melnikov Method: An Experimental Study , 1999, Exp. Math..

[55]  Guido Gentile,et al.  Separatrix Splitting for Systems with Three Time Scales , 1999 .

[56]  V. G. Gelfreich,et al.  Melnikov method and exponentially small splitting of separatrices , 1997 .

[57]  Carles Simó,et al.  High-precision computations of divergent asymptotic series and homoclinic phenomena , 2008 .