The WiggleZ Dark Energy Survey: Final data release and cosmological results

This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z=0.22, 0.41, 0.60, and 0.78, combined with other cosmological data sets. The limiting factor in this analysis is the theoretical modeling of the galaxy power spectrum, including nonlinearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modeling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of six cosmological parameters, {Ω_(b)h^2,Ω_(CDM)h^2,H_0,τ,A_s,n_s}, and five supplementary parameters {n_(run),r,w,Ω_k,∑m_ν}. In combination with the cosmic microwave background, our results are consistent with the ΛCDM concordance cosmology, with a measurement of the matter density of Ωm=0.29±0.016 and amplitude of fluctuations σ_8=0.825±0.017. Using WiggleZ data with cosmic microwave background and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their ΛCDM model values. The power spectra data and theoretical modeling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data. We also release the data and random catalogs used to construct the baryon acoustic oscillation correlation function.

[1]  Scott Croom,et al.  WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies , 2011, 1112.4940.

[2]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[3]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae , 2011, 1108.2637.

[4]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[5]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[6]  A. Cimatti,et al.  Effects of massive neutrinos on the large-scale structure of the Universe , 2011, 1103.0278.

[7]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[8]  M. Sullivan,et al.  SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.

[9]  B. Hsieh,et al.  THE RED-SEQUENCE CLUSTER SURVEY-2 (RCS-2): SURVEY DETAILS AND PHOTOMETRIC CATALOG CONSTRUCTION , 2010, 1012.3470.

[10]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[11]  Matthew Colless,et al.  The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum , 2010, 1003.5721.

[12]  C. Baugh,et al.  Modelling Redshift Space Distortions in Hierarchical Cosmologies , 2010, 1003.4282.

[13]  O. Cappé,et al.  Bayesian model comparison in cosmology with Population Monte Carlo , 2009, 0912.1614.

[14]  L. Verde,et al.  Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.

[15]  Constraints on primordial isocurvature perturbations and spatial curvature by Bayesian model selection , 2009, 0909.5190.

[16]  Andrew R. Liddle,et al.  The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure , 2009 .

[17]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[18]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[19]  M. Cortês,et al.  Dynamical dark energy or simply cosmic curvature? , 2007, astro-ph/0702670.

[20]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[21]  Miao Li Non-minimal inflation and the running spectral index , 2006, astro-ph/0607525.

[22]  Vladimir Churilov,et al.  Performance of AAOmega: the AAT multi-purpose fiber-fed spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[23]  D. Parkinson,et al.  Bayesian model selection analysis of WMAP3 , 2006, astro-ph/0605003.

[24]  D. Parkinson,et al.  A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.

[25]  B. Bassett,et al.  Inflation dynamics and reheating , 2005, astro-ph/0507632.

[26]  A. Slosar,et al.  Bayesian model selection and isocurvature perturbations , 2005, astro-ph/0501477.

[27]  R. Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004, astro-ph/0407214.

[28]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[29]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[30]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[31]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[32]  Andrew R. Liddle,et al.  Cosmological Inflation and Large-Scale Structure , 2000 .

[33]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[34]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[35]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[36]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[37]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[38]  George Efstathiou,et al.  Galaxy correlations on large scales , 1990 .

[39]  Andrei Linde Chapter 1 – PARTICLE PHYSICS AND INFLATIONARY COSMOLOGY , 1990 .

[40]  Andrei Linde Particle Physics and Inflationary Cosmology , 1987, Physics Today.

[41]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[42]  John L. Tonry,et al.  X-Ray Spectra of Active Galactic Nuclei. , 1983 .

[43]  John L. Tonry,et al.  A survey of galaxy redshifts: 4. The data. , 1983 .

[44]  H. Akaike A new look at the statistical model identification , 1974 .

[45]  A. Tustin Automatic Control , 1951, Nature.