Polystyrene Surface Modification for Localized Cell Culture Using a Capillary Dielectric Barrier Discharge Atmospheric‐Pressure Microplasma Jet

This paper reports the spatially resolved surface modification of polystyrene (PS) using an atmospheric-pressure microplasma jet. Treatment of PS surfaces using a microplasma jet with a 100 ?m diameter is investigated using contact angle, XPS, AFM and lens epithelial cell (LEC) growth. Microplasma jet treatment creates a defined reduction in contact angle of approximately 60°in a circular pattern with a diameter of 1.5 mm or more. Spatially resolved XPS analysis demonstrates that a reduction in contact angle is related to an increase in O1s peak intensity. AFM confirms that microplasma jet treatment causes no significant change in surface roughness. LECs are confined to a treated area. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

[1]  R. Kane,et al.  Effect of surface wettability on the adhesion of proteins. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[2]  T. Ichiki,et al.  Surface modification of poly(dimethylsiloxane) for controlling biological cells’ adhesion using a scanning radical microjet , 2007 .

[3]  E. Szili,et al.  Controlling the Spatial Distribution of Polymer Surface Treatment Using Atmospheric-Pressure Microplasma Jets , 2011 .

[4]  J. Walsh,et al.  Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses , 2007 .

[5]  K. Paek,et al.  Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. , 2006, Journal of Microbiology.

[6]  Cheng‐Che Hsu,et al.  A Flexible Paper-Based Microdischarge Array Device for Maskless Patterning on Nonflat Surfaces , 2013, Journal of Microelectromechanical Systems.

[7]  M. Batterbury,et al.  Modification of the surface properties of a lens material to influence posterior capsular opacification , 2006, Clinical & experimental ophthalmology.

[8]  B. Meenan,et al.  Surface modification of poly(epsilon-caprolactone) using a dielectric barrier discharge in atmospheric pressure glow discharge mode. , 2009, Acta biomaterialia.

[9]  Mischa Zelzer,et al.  Picoliter water contact angle measurement on polymers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[10]  Jun‐Seok Oh,et al.  Imaging gas and plasma interactions in the surface-chemical modification of polymers using micro-plasma jets , 2011 .

[11]  Gregory Fridman,et al.  Applied Plasma Medicine , 2008 .

[12]  Y. Kusano Plasma surface modification at atmospheric pressure , 2009 .

[13]  J. West,et al.  Microplasma writing for surface-directed millifluidics. , 2007, Lab on a chip.

[14]  E. Kuffel,et al.  Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air , 2009 .

[15]  L. Vroman,et al.  Effect of Adsorbed Proteins on the Wettability of Hydrophilic and Hydrophobic Solids , 1962, Nature.

[16]  R. Short Plasma treatment of polymers Effects of energy transfer from an argon plasma on the surface chemistry of poly(styrene), low density poly(ethylene), poly(propylene) and poly(ethylene terephthalate) , 1997 .

[17]  Jun‐Seok Oh,et al.  Time-resolved mass spectroscopic studies of an atmospheric-pressure helium microplasma jet , 2011 .

[18]  P. Weightman A New High Sensitivity Auger Spectrometer , 1992 .

[19]  Kunihide Tachibana,et al.  Current status of microplasma research , 2006 .

[20]  Yoon-Kee Kim,et al.  Adhesion Improvement of Polyimide/Metal Interface by He/O2/NF3 Atmospheric Pressure Plasma , 2009 .

[21]  S. Saika Relationship between posterior capsule opacification and intraocular lens biocompatibility , 2004, Progress in Retinal and Eye Research.

[22]  N. Voelcker,et al.  Fabrication and Operation of a Microcavity Plasma Array Device for Microscale Surface Modification , 2012 .

[23]  Sung-Jin Park,et al.  The use of a micro-cavity discharge array at atmospheric pressure to investigate the spatial modification of polymer surfaces , 2010 .

[24]  F. Grinnell,et al.  Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. , 1982, The Journal of biological chemistry.

[25]  J. Vanfleteren,et al.  Remote Atmospheric Pressure DC Glow Discharge Treatment for Adhesion Improvement of PDMS , 2009 .

[26]  Mounir Laroussi,et al.  Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review , 2007 .

[27]  N. Voelcker,et al.  Microplasma arrays: a new approach for maskless and localized patterning of materials surfaces , 2012 .

[28]  Jun‐Seok Oh,et al.  Schlieren Photography of the Outflow From a Plasma Jet , 2011, IEEE Transactions on Plasma Science.

[29]  L. Gerenser XPS studies of in situ plasma-modified polymer surfaces , 1993 .

[30]  F. Iwata,et al.  Production of ultrafine atmospheric pressure plasma jet with nano-capillary , 2010 .

[31]  Richard L. Leask,et al.  Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch , 2006 .

[32]  S. Barman,et al.  Posterior capsular opacification with hydrogel, polymethylmethacrylate, and silicone intraocular lenses: two-year results of a randomized prospective trial. , 2000, American journal of ophthalmology.

[33]  Hans J. Griesser,et al.  Design of a microplasma device for spatially localised plasma polymerisation , 2011 .

[34]  Christine Jérôme,et al.  Polymers in modern ophthalmic implants—Historical background and recent advances , 2010 .

[35]  George A Burke,et al.  Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. , 2010, Acta biomaterialia.

[36]  B. Dalton,et al.  Effects of polystyrene surface chemistry on the biological activity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies. , 1993, Journal of cell science.