Integration of Parallel Opposing Memories Underlies Memory Extinction

[1]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. , 1929, Annals of neurosciences.

[2]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[3]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Quinn,et al.  Reward learning in normal and mutant Drosophila. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[6]  An open graph visualization system and its applications to software engineering , 2000 .

[7]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[8]  Y. Dudai,et al.  Memory Extinction, Learning Anew, and Learning the New: Dissociations in the Molecular Machinery of Learning in Cortex , 2001, Science.

[9]  Theresa M. Desrochers,et al.  Two different lateral amygdala cell populations contribute to the initiation and storage of memory , 2001, Nature Neuroscience.

[10]  Martin Heisenberg,et al.  Extinction Antagonizes Olfactory Memory at the Subcellular Level , 2002, Neuron.

[11]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[12]  Y. Dudai,et al.  The amygdalar circuit that acquires taste aversion memory differs from the circuit that extinguishes it , 2003, The European journal of neuroscience.

[13]  Y. Dudai Properties of learning and memory inDrosophila melanogaster , 2004, Journal of comparative physiology.

[14]  R. Rescorla Spontaneous recovery. , 2004, Learning & memory.

[15]  Yadin Dudai,et al.  Reconsolidation of fresh, remote, and extinguished fear memory in medaka: old fears don't die , 2004, The European journal of neuroscience.

[16]  M. Bouton Context and behavioral processes in extinction. , 2004, Learning & memory.

[17]  W. Quinn,et al.  Classical conditioning and retention in normal and mutantDrosophila melanogaster , 1985, Journal of Comparative Physiology A.

[18]  Michael Davis,et al.  Different mechanisms of fear extinction dependent on length of time since fear acquisition. , 2006, Learning & memory.

[19]  M. Bouton,et al.  Contextual and Temporal Modulation of Extinction: Behavioral and Biological Mechanisms , 2006, Biological Psychiatry.

[20]  I. Meinertzhagen,et al.  Development and structure of synaptic contacts in Drosophila. , 2006, Seminars in cell & developmental biology.

[21]  Ronald L. Davis,et al.  Drosophila α/β Mushroom Body Neurons Form a Branch-Specific, Long-Term Cellular Memory Trace after Spaced Olfactory Conditioning , 2006, Neuron.

[22]  G. Miesenböck,et al.  Excitatory Local Circuits and Their Implications for Olfactory Processing in the Fly Antennal Lobe , 2007, Cell.

[23]  Joseph J. Paton,et al.  Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala , 2007, Neuron.

[24]  M. Davis,et al.  Mechanisms of fear extinction , 2007, Molecular Psychiatry.

[25]  K. Han,et al.  D1 Dopamine Receptor dDA1 Is Required in the Mushroom Body Neurons for Aversive and Appetitive Learning in Drosophila , 2007, The Journal of Neuroscience.

[26]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[27]  S. Waddell,et al.  Rapid Consolidation to a radish and Protein Synthesis-Dependent Long-Term Memory after Single-Session Appetitive Olfactory Conditioning in Drosophila , 2008, The Journal of Neuroscience.

[28]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[29]  Ronald L. Davis,et al.  Dynamics of Learning-Related cAMP Signaling and Stimulus Integration in the Drosophila Olfactory Pathway , 2009, Neuron.

[30]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[31]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[32]  Patricia H. Janak,et al.  Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal , 2009, Proceedings of the National Academy of Sciences.

[33]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[34]  Johannes J. Letzkus,et al.  Neuronal circuits of fear extinction , 2010, The European journal of neuroscience.

[35]  Yoshinori Aso,et al.  Specific Dopaminergic Neurons for the Formation of Labile Aversive Memory , 2010, Current Biology.

[36]  G. Rubin,et al.  Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila , 2011, Nature Neuroscience.

[37]  Zhiyuan Lu,et al.  Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx , 2012, The Journal of comparative neurology.

[38]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[39]  G. Rubin,et al.  A subset of dopamine neurons signals reward for odour memory in Drosophila , 2012, Nature.

[40]  Daryl M. Gohl,et al.  Layered reward signaling through octopamine and dopamine in Drosophila , 2012, Nature.

[41]  Wanhe Li,et al.  Gamma Neurons Mediate Dopaminergic Input during Aversive Olfactory Memory Formation in Drosophila , 2012, Current Biology.

[42]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[43]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[44]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[45]  G. Roman,et al.  Presynaptic Inhibition of Gamma Lobe Neurons Is Required for Olfactory Learning in Drosophila , 2013, Current Biology.

[46]  J. Dudman,et al.  Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain , 2012, Nature Neuroscience.

[47]  Josiah R. Boivin,et al.  A Causal Link Between Prediction Errors, Dopamine Neurons and Learning , 2013, Nature Neuroscience.

[48]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[49]  Scott Waddell,et al.  Drosophila Learn Opposing Components of a Compound Food Stimulus , 2014, Current Biology.

[50]  S. Tomchik,et al.  Dopaminergic Modulation of cAMP Drives Nonlinear Plasticity across the Drosophila Mushroom Body Lobes , 2014, Current Biology.

[51]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[52]  Vikram Chandra,et al.  Neural correlates of water reward in thirsty Drosophila , 2014, Nature Neuroscience.

[53]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[54]  S. Lammel,et al.  Reward and aversion in a heterogeneous midbrain dopamine system , 2014, Neuropharmacology.

[55]  S. Tonegawa,et al.  Bidirectional switch of the valence associated with a hippocampal contextual memory engram , 2014, Nature.

[56]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[57]  David J. Anderson,et al.  P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila , 2015, eLife.

[58]  Gerald M. Rubin,et al.  Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila , 2015, Neuron.

[59]  Scott Waddell,et al.  Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila , 2015, Current Opinion in Neurobiology.

[60]  Thomas Preat,et al.  Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory. , 2015, Cell reports.

[61]  Ian R. Wickersham,et al.  A Circuit Mechanism for Differentiating Positive and Negative Associations , 2015, Nature.

[62]  Raphael Cohn,et al.  Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila , 2015, Cell.

[63]  Edmund C Schwartz,et al.  Neural Representations of Unconditioned Stimuli in Basolateral Amygdala Mediate Innate and Learned Responses , 2015, Cell.

[64]  Andreas Lüthi,et al.  Disinhibition, a Circuit Mechanism for Associative Learning and Memory , 2015, Neuron.

[65]  Johannes Felsenberg,et al.  Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila , 2015, Neuron.

[66]  Scott Waddell,et al.  Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila , 2015, Current Biology.

[67]  S. Lissek,et al.  Learning models of PTSD: Theoretical accounts and psychobiological evidence. , 2015, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[68]  M. Saitoe,et al.  Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies , 2016, Nature Communications.

[69]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[70]  Johannes Felsenberg,et al.  Memory-Relevant Mushroom Body Output Synapses Are Cholinergic , 2016, Neuron.

[71]  Michele Pignatelli,et al.  Antagonistic negative and positive neurons of the basolateral amygdala , 2016, Nature Neuroscience.

[72]  Oliver Barnstedt,et al.  Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body , 2016, Neuron.

[73]  Casey M. Schneider-Mizell,et al.  Synaptic transmission parallels neuromodulation in a central food-intake circuit , 2016, bioRxiv.

[74]  Praneeth Namburi,et al.  Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval , 2016, Neuron.

[75]  Barry J. Dickson,et al.  The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system , 2017, bioRxiv.

[76]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[77]  M. Capogna,et al.  Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories , 2017, Neuron.

[78]  Pablo E. Jercog,et al.  Neural ensemble dynamics underlying a long-term associative memory , 2017, Nature.

[79]  Johannes Felsenberg,et al.  Re-evaluation of learned information in Drosophila , 2017, Nature.

[80]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[81]  Barry J Dickson,et al.  Persistent activity in a recurrent circuit underlies courtship memory in Drosophila , 2018, eLife.

[82]  Benjamin T. Saunders,et al.  Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties , 2018, Nature Neuroscience.

[83]  J. Johansen,et al.  A dopaminergic switch for fear to safety transitions , 2018, Nature Communications.

[84]  Paola Cognigni,et al.  Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila , 2018, Current Opinion in Neurobiology.

[85]  A. Lüthi,et al.  Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning , 2017, Biological Psychiatry.