Monotone Smoothing with Application to Dose-Response Curve

Motivated by problems that arise in dose-response curve estimation, we developed a new method to estimate a monotone curve. The resulting monotone estimator is obtained by combining techniques from smoothing splines with nonnegativity properties of cubic B-splines. Numerical experiments are given to exemplify the method.

[1]  H. Milicer,et al.  Age at menarche in Warsaw girls in 1965. , 1966, Human biology.

[2]  C. Kelly,et al.  Monotone smoothing with application to dose-response curves and the assessment of synergism. , 1990, Biometrics.

[3]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[4]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[5]  Richard L. Schmoyer,et al.  Sigmoidally Constrained Maximum Likelihood Estimation in Quantal Bioassay , 1984 .

[6]  James O. Ramsay,et al.  Binomial Regression with Monotone Splines: A Psychometric Application , 1989 .

[7]  G. Wahba Spline models for observational data , 1990 .

[8]  Jerry Halpern,et al.  Robust estimators for quantal bioassay , 1980 .

[9]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[10]  Zakkula Govindarajulu,et al.  Statistical Techniques in Bioassay , 1988 .

[11]  D. Jupp Approximation to Data by Splines with Free Knots , 1978 .

[12]  S. Crawford,et al.  Analysis of Quantal Response Data , 1994 .

[13]  L. Schumaker,et al.  Computation of Smoothing and Interpolating Natural Splines via Local Bases , 1973 .

[14]  C. A. Glasbey,et al.  Tolerance-distribution-free analyses of quantal dose-response data , 1987 .

[15]  Florencio I. Utreras,et al.  Smoothing noisy data under monotonicity constraints existence, characterization and convergence rates , 1985 .

[16]  H. D. Brunk,et al.  AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .

[17]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[18]  Saad T. Bakir,et al.  Nonparametric Regression and Spline Smoothing , 2000, Technometrics.

[19]  Low-dose extrapolation using the power family of response functions , 2001 .

[20]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[21]  Rabi Bhattacharya,et al.  Consistency and asymptotic normality of the estimated effective doses in bioassay , 2007 .

[22]  G. Cran,et al.  Algorithm AS 149: Amalgamation of Means in the Case of Simple Ordering , 1980 .