Numerical wave propagation in ImageJ.

An ImageJ plugin for numerical wave propagation is presented. The plugin provides ImageJ, the well-known software for image processing, with the capability of computing numerical wave propagation by the use of angular spectrum, Fresnel, and Fresnel-Bluestein algorithms. The plugin enables numerical wave propagation within the robust environment provided by the complete set of built-in tools for image processing available in ImageJ. The plugin can be used for teaching and research purposes. We illustrate its use to numerically recreate Poisson's spot and Babinet's principle, and in the numerical reconstruction of digitally recorded holograms from millimeter-sized and pure phase microscopic objects.

[1]  Anbo Wang,et al.  Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. , 2006, Applied optics.

[2]  Ridwan Bin Adrian Tanjung,et al.  Fast CGH computation using S-LUT on GPU. , 2009, Optics express.

[3]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[4]  Tomoyoshi Shimobaba,et al.  Computational wave optics library for C++: CWO++ library , 2011, Comput. Phys. Commun..

[5]  Werner Jüptner,et al.  Digital recording and numerical reconstruction of holograms , 2002 .

[6]  Wolfgang Osten,et al.  itom: an open source metrology, automation, and data evaluation software. , 2014, Applied optics.

[7]  Zeev Zalevsky,et al.  Computation considerations and fast algorithms for calculating the diffraction integral , 1997 .

[8]  Jorge Garcia-Sucerquia,et al.  Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform. , 2010, Applied optics.

[9]  Ana Doblas,et al.  Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. , 2014, Applied optics.

[10]  P. Picart,et al.  General theoretical formulation of image formation in digital Fresnel holography. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  E. Cuche,et al.  Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. , 2000, Applied optics.

[12]  Carlos Ferreira,et al.  Fast algorithms for free-space diffraction patterns calculation , 1999 .

[13]  Chun-Min Lo,et al.  High-resolution quantitative phase-contrast microscopy by digital holography. , 2005, Optics express.