Efficient edge detection and object segmentation using Gabor filters

Gabor filter is a widely used feature extraction method, especially in image texture analysis. The selection of optimal filter parameters is usually problematic and unclear. This study analyzes the filter design essentials and proposes two different methods to segment the Gabor filtered multi-channel images. The first method integrates Gabor filters with labeling algorithm for edge detection and object segmentation. The second method uses the K-means clustering with simulated annealing for image segmentation of a stack of Gabor filtered multi-channel images. Various experiments with real images demonstrate the effectiveness of these approaches.

[1]  Gabriel Cristóbal,et al.  Image Representation with Gabor Wavelets and Its Applications , 1997 .

[2]  Carl G. Looney,et al.  Fast connected component labeling algorithm using a divide and conquer technique , 2000, CATA.

[3]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  K. Chan,et al.  Features for texture segmentation using Gabor filters , 1999 .

[5]  Shie Qian,et al.  Discrete Gabor transform , 1993, IEEE Trans. Signal Process..

[6]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[7]  Dennis Gabor,et al.  Theory of communication , 1946 .

[8]  Jie Yao,et al.  The generalized Gabor transform , 1995, IEEE Trans. Image Process..

[9]  Dennis F. Dunn,et al.  Optimal Gabor filters for texture segmentation , 1995, IEEE Trans. Image Process..

[10]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[11]  William E. Higgins,et al.  Integrated approach to texture segmentation using multiple Gabor filters , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[12]  Liang Tao,et al.  Real-valued discrete Gabor transform for image representation , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[13]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[14]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[15]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Sanjit K. Mitra,et al.  Digital Signal Processing: A Computer-Based Approach , 1997 .

[17]  Oscar Nestares,et al.  Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions , 1998, J. Electronic Imaging.

[18]  Juliang Shao,et al.  Gabor wavelets for texture edge extraction , 1994, Other Conferences.

[19]  Joni-Kristian Kämäräinen,et al.  Fundamental frequency Gabor filters for object recognition , 2002, Object recognition supported by user interaction for service robots.

[20]  J. J. Gerbrands Segmentation of noisy images , 1988 .

[21]  David A. Clausi,et al.  Designing Gabor filters for optimal texture separability , 2000, Pattern Recognit..

[22]  Josef Bigün,et al.  N-folded Symmetries by Complex Moments in Gabor Space and their Application to Unsupervised Texture Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[24]  Linda G. Shapiro,et al.  Computer and Robot Vision (Volume II) , 2002 .

[25]  Vance Faber,et al.  Clustering and the continuous k-means algorithm , 1994 .

[26]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.