Experimental confirmation of Zener-polaron-type charge and orbital ordering in Pr1−xCaxMnO3

Pr{sub 1-x}Ca{sub x}MnO{sub 3} in the doping range between 0.3<x<0.5 represent an extremely interesting manganite system for the study of the interplay of different kinds of ordering (charge, orbital, lattice, and spin). While there is consensus that a charge- and orbital-ordered state develops below a transition temperature T{sub co}{approx_equal}230 K, recent controversial structural refinements resulting from neutron and x-ray diffraction studies challenged our understanding of the particular type of charge ordering (CO) and orbital ordering (OO), and consequently, the underlying mechanism of the colossal resistance effects. Here, we present a detailed high-resolution transmission electron microscopy and electron-diffraction study that, based on extinction rules, resolves the current controversy and confirms the existence of the Zener-polaron (ZP)-type CO and/or OO in Pr{sub 1-x}Ca{sub x}MnO{sub 3}. The ZP-type ordering is further verified by atomic-column-resolved electron energy-loss spectroscopy revealing strong charge ordering of the in-plane oxygen-Mn bonds, while valence disproportionation at the Mn sites is less than expected. Over wide doping and temperature ranges, we observed structural phase coexistence between the ZP-CO/OO P2{sub 1}nm and the disordered Pbnm structure.

[1]  T. Beetz,et al.  Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites , 2007, Proceedings of the National Academy of Sciences.

[2]  C. Jooss,et al.  Comparative study of magnetic and electric field induced insulator-metal-transitions in Pr1-xCaxMnO3 films , 2006 .

[3]  Wei Tian,et al.  Atomic scale characterization of complex oxide interfaces , 2006 .

[4]  O. Lebedev,et al.  A-site ordering versus electronic inhomogeneity in colossally magnetoresistive manganite films. , 2005, Physical review letters.

[5]  R. Klie,et al.  Atomic resolution STEM analysis of defects and interfaces in ceramic materials. , 2005, Micron.

[6]  J. van den Brink,et al.  Bond- versus site-centred ordering and possible ferroelectricity in manganites , 2004, Nature materials.

[7]  R. Broer,et al.  Ab initio study of the charge order and Zener polaron formation in half-doped manganites , 2004 .

[8]  J. Attfield,et al.  Charge ordering in half-doped manganites , 2004 .

[9]  C. H. Patterson Competing crystal structures in La 0.5 Ca 0.5 Mn O 3 : Conventional charge order versus Zener polarons , 2004, cond-mat/0405299.

[10]  P. Woodward,et al.  Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites. , 2004, Acta crystallographica. Section B, Structural science.

[11]  J. C. Loudon,et al.  Weak charge-lattice coupling requires reinterpretation of stripes of charge order in La1-xCaxMnO3. , 2003, Physical review letters.

[12]  K. J. Thomas,et al.  Resonant x-ray diffraction of the magnetoresistant perovskite Pr0.6Ca0.4MnO3 , 2003, cond-mat/0305216.

[13]  M. Pollet,et al.  Anomaly in the dielectric response at the charge-orbital-ordering transition of Pr 0.67 Ca 0.33 MnO 3 , 2003, cond-mat/0304281.

[14]  J. Rodríguez-Carvajal,et al.  Zener polaron ordering in half-doped manganites. , 2002, Physical review letters.

[15]  N. Kolev,et al.  Raman spectroscopy of the charge- and orbital-ordered state in La 0.5 Ca 0.5 MnO 3 , 2001 .

[16]  S. Cheong,et al.  Orbital correlations in doped manganites , 2001, cond-mat/0105064.

[17]  G. Subías,et al.  High resolution x-ray absorption near edge structure at the Mn K edge of manganites , 2001 .

[18]  P. Halasyamani,et al.  Bi(2)TeO(5): synthesis, structure, and powder second harmonic generation properties. , 2001, Inorganic chemistry.

[19]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[20]  J. Goodenough,et al.  Localized-Itinerant and Mott–Hubbard Transitions in Several Perovskites , 2000 .

[21]  Y. Tomioka,et al.  Spectroscopic study of photoinduced charge-gap collapse in the correlated insulators Pr1-xCaxMnO3 , 2000 .

[22]  Y. Tomioka,et al.  Commensurate-incommensurate transition in the melting process of orbital ordering in Pr 0.5 Ca 0.5 MnO 3 : A neutron diffraction study , 2000, cond-mat/0009041.

[23]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[24]  Y. Tokura Colossal Magnetoresistive Oxides , 2000 .

[25]  Y. P. Lee,et al.  Temperature dependence of resistance of Pr0.65Ca0.35MnO3 films prepared by pulsed laser deposition , 1999 .

[26]  S. Cheong,et al.  Microstructure related to charge and orbital ordering in Pr0.5Ca0.5MnO3 , 1999 .

[27]  Nigel D. Browning,et al.  Practical aspects of atomic resolution imaging and analysis in STEM , 1999 .

[28]  A. Tanaka,et al.  Threshold electronic structure at the oxygen K edge of 3d transition metal oxides: a configuration interaction approach. , 1999, cond-mat/9902132.

[29]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[30]  Miyano,et al.  Visualization of the local insulator-metal transition in Pr0.7Ca0. 3MnO3 , 1998, Science.

[31]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[32]  Y. Tomioka,et al.  Pressure effects on charge-ordering transitions in Perovskite manganites , 1997 .

[33]  Adam I. Amali,et al.  Theory of Lattice Resolution in High-angle Annular Dark-field Images , 1997, Microscopy and Microanalysis.

[34]  X. Obradors,et al.  Bandwidth narrowing in bulk magnetoresistive oxides , 1996 .

[35]  V. Anisimov,et al.  ORBITAL AND CHARGE ORDERING IN PR1-XCAXMNO3(X=0 AND 0.5) FROM THE AB INITIO CALCULATIONS , 1996, cond-mat/9609158.

[36]  Kuwahara,et al.  Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability. , 1996, Physical review. B, Condensed matter.

[37]  N. Browning,et al.  Atomic-resolution chemical analysis using a scanning transmission electron microscope , 1993, Nature.

[38]  Colliex,et al.  Electron-energy-loss core-edge structures in manganese oxides. , 1993, Physical review. B, Condensed matter.

[39]  Russell F. Loane,et al.  Annular dark-field imaging: Resolution and thickness effects , 1993 .

[40]  Russell F. Loane,et al.  Incoherent imaging of zone axis crystals with ADF STEM , 1992 .

[41]  O. Krivanek,et al.  Elnes of 3d transition-metal oxides. II, Variations with oxidation state and crystal structure , 1990 .

[42]  L. A. Boatner,et al.  Chemically sensitive structure-imaging with a scanning transmission electron microscope , 1988, Nature.

[43]  Z. Šimša,et al.  Neutron diffraction study of Pr1 − xCaxMnO3 perovskites , 1985 .

[44]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[45]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[46]  S. Mahanti,et al.  Physics of manganites , 2002 .

[47]  J. Renard,et al.  COLOSSAL RESISTIVE RELAXATION EFFECTS IN A PR0.67CA0.33MNO3 SINGLE CRYSTAL , 1999 .

[48]  Peter R. Buseck,et al.  Determination of manganese oxidation states in solids by electron energy-loss spectroscopy , 1987 .