Towards patient-individual blood flow simulations based on PC-MRI measurements

Computational haemodynamics based on CT or MRI tomographic scans of individual patient vessel anatomy can be a valuable tool for therapy decision in cardiovascular and cerebrovascular diseases. Current approaches are promising, but still suffer from complex model generation, poor knowledge of haemodynamical parameters and high computational costs. We present a new approach of constructing patientindividual flow models that is based on additional knowledge from 4D PC-MRI data, and on the Lattice-Boltzmann method as an alternative flow solver. It potentially allows for easier assembling of models, improved accuracy and faster computations by massive parallelization. In this paper, we verify our method for a stenotic flow phantom by comparison with an established CFD solver, and we test the method in order to simulate systolic flow in a carotid bifurcation and compare it to the 4D PC-MRI flow data.

[1]  R. Grossman,et al.  Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates , 2009, Acta Neurochirurgica.

[2]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[3]  Ulrich Rüde,et al.  Fluid flow simulation on the Cell Broadband Engine using the lattice Boltzmann method , 2009, Comput. Math. Appl..

[4]  Rainald Löhner,et al.  Simulation of intracranial aneurysm stenting: Techniques and challenges , 2009 .

[5]  Leopoldo Altamirano Robles,et al.  Fast Noncontinuous Path Phase-Unwrapping Algorithm Based on Gradients and Mask , 2004, CIARP.

[6]  Jan-Willem Lankhaar,et al.  Correction of phase offset errors in main pulmonary artery flow quantification , 2005, Journal of magnetic resonance imaging : JMRI.

[7]  Heinz-Otto Peitgen,et al.  Fast interactive exploration of 4D MRI flow data , 2011, Medical Imaging.

[8]  M. Alley,et al.  Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics , 2009, Journal of engineering mathematics.

[9]  Alastair J. Martin,et al.  Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. , 2008, Journal of biomechanical engineering.

[10]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[11]  Stephen M. Smith,et al.  Concurrent Numerical Simulation of Flow and Blood Clotting using the Lattice Boltzmann Technique , 2005, ICPADS.

[12]  David A. Steinman,et al.  An image-based modeling framework for patient-specific computational hemodynamics , 2008, Medical & Biological Engineering & Computing.

[13]  Bernhard Preim,et al.  Vergleich zwischen 7 Tesla 4D PC-MRI-Flussmessung und CFD-Simulation , 2011, Bildverarbeitung für die Medizin.

[14]  Jonas Latt,et al.  Hydrodynamic limit of lattice Boltzmann equations , 2007 .

[15]  Bernhard Preim,et al.  Geometrical and Structural Analysis of Vessel Systems in 3D Medical Image Datasets , 2004 .

[16]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[17]  C. K. Chong,et al.  Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice , 2011, J. Comput. Phys..

[18]  V. Lee,et al.  Cardiovascular applications of phase-contrast MRI. , 2009, AJR. American journal of roentgenology.

[19]  G. Duckwiler,et al.  Lattice Boltzmann simulation of cerebral artery hemodynamics , 2009 .

[20]  Bernhard Preim,et al.  Investigations of steady and unsteady flows in an aortic aneurysm , 2009 .

[21]  C M Putman,et al.  Hemodynamics and Bleb Formation in Intracranial Aneurysms , 2010, American Journal of Neuroradiology.

[22]  Daniel B Vigneron,et al.  Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. , 2010, Magnetic resonance imaging.

[23]  Charles A. Taylor,et al.  Patient-specific modeling of cardiovascular mechanics. , 2009, Annual review of biomedical engineering.

[24]  O. Friman,et al.  Non-invasive 4D blood flow and pressure quantification in central blood vessels via PC-MRI , 2010, 2010 Computing in Cardiology.

[25]  Cornelius Weiller,et al.  In vivo assessment of wall shear stress in the atherosclerotic aorta using flow‐sensitive 4D MRI , 2010, Magnetic resonance in medicine.

[26]  A. Hoekstra,et al.  Mesoscopic simulations of systolic flow in the human abdominal aorta. , 2006, Journal of biomechanics.