Resolution and Kinetic Stability of a Chiral Supramolecular Assembly Made of Labile Components.

The importance of chirality for recognition processes in nature is impressively exemplified by the different tastes of (R)and (S)-asparagine,[1] and the vastly different pharmacological effects of the two enantiomers of thalidomide.[2] Chirality is not the exclusive domain of organic chemistry, many metals can also serve as centers of chirality.[3] The most frequent case is an octahedral arrangment of three bidentate ligands around a metal center to form D or L absolute configurations. Chirality at metal centers has been found to play an important role in nature, for example, for the siderophore-mediated iron uptake in many organisms.[4] D/L Isomerization of tris-bidentate complexes of the labile high-spin ferric ion or its closely related gallium(iii) analogues is rapid in aqueous solution. Tris(catecholate)gallium(iii) complexes, model compounds of iron siderophores, usually racemize fast. Racemization rates of 10(1) sÿ1 for a mononuclear complex[5] and 0.10(1) sÿ1 for a dinuclear helix[6] were determined by NMR studies. The isomerization was found to

[1]  P. Stang,et al.  Self-assembly of discrete cyclic nanostructures mediated by transition metals. , 2000, Chemical reviews.

[2]  K. Raymond,et al.  Dynamic Isomerization of a Supramolecular Tetrahedral M4L6 Cluster1 , 1999 .

[3]  A. von Zelewsky,et al.  Predetermined Chirality at Metal Centers. , 1999, Angewandte Chemie.

[4]  A. V. Zelewsky,et al.  Prädeterminierte Chiralität an Metallzentren , 1999 .

[5]  M. Ziegler Charge-transfer excited state properties of chiral transition metal coordination compounds studied by chiroptical spectroscopy , 1998 .

[6]  K. Raymond,et al.  The Self‐Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster , 1998 .

[7]  R. Saalfrank,et al.  Ligand and metal controlled multicomponent self-assembly of oligonuclear two- and three-dimensional complex molecular architectures , 1998 .

[8]  K. Raymond,et al.  Selective Encapsulation of Aqueous Cationic Guests into a Supramolecular Tetrahedral [M4L6]12- Anionic Host1 , 1998 .

[9]  Kenneth N. Raymond,et al.  Selbstorganisation eines supramolekularen tetraedrischen M4L6‐Clusters , 1998 .

[10]  T. D. Stack,et al.  Stereospecificity and Self-Selectivity in the Generation of a Chiral Molecular Tetrahedron by Metal-Assisted Self-Assembly. , 1998, Angewandte Chemie.

[11]  E. J. Enemark,et al.  Stereospezifität und Selbstselektivitét bei der Herstellung eines chiralen molekularen Tetraeders durch Metall‐vermittelte Selbstanordnung , 1998 .

[12]  K. Raymond,et al.  Rearrangement Reactions in Dinuclear Triple Helicates1 , 1997 .

[13]  K. Raymond,et al.  Dinuclear Catecholate Helicates: Their Inversion Mechanism , 1996 .

[14]  K. Raymond,et al.  Symmetry‐Based Metal Complex Cluster Formation , 1996 .

[15]  Kenneth N. Raymond,et al.  Symmetriegesteuerte Bildung von Metallclustern , 1996 .

[16]  J. Lehn,et al.  Self‐Assembly, Structure, and Spontaneous Resolution of a Trinuclear Triple Helix from an Oligobipyridine Ligand and NiII Ions , 1993 .

[17]  J. Lehn,et al.  Selbstorganisation, Struktur und spontane Racematspaltung eines aus Oligobipyridinliganden und NiII‐Ionen gebildeten dreikernigen Tripelhelixkomplexes , 1993 .

[18]  H. Flack,et al.  On enantiomorph‐polarity estimation , 1983 .

[19]  J. I. Seeman,et al.  The iodomethylation of nicotine. An unusual example of competitive nitrogen alkylation. , 1976, The Journal of organic chemistry.

[20]  Kenneth N. Raymond,et al.  The rational design of high symmetry coordination clusters , 1999 .

[21]  M. Fujita,et al.  Metal-directed self-assembly of two- and three-dimensional synthetic receptors , 1998 .

[22]  G. Bernardinelli,et al.  Synthesis, structure and resolution of a dinuclear CoIII triple helix , 1994 .