Convergence of the empirical spectral distribution function of Beta matrices
暂无分享,去创建一个
Jiang Hu | Zhidong Bai | Wang Zhou | Guangming Pan | Z. Bai | G. Pan | Jiang Hu | Wang Zhou | Z. Bai
[1] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[2] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[3] Shurong Zheng,et al. Central limit theorems for linear spectral statistics of large dimensional F-matrices , 2012 .
[4] Z. D. Bai,et al. On the Limiting Empirical Distribution Function of the Eigenvalues of a Multivariate F Matrix , 1988 .
[5] P. Rousseeuw,et al. Wiley Series in Probability and Mathematical Statistics , 2005 .
[6] J. W. Silverstein,et al. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .
[7] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[8] Z. Bai,et al. CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.
[9] Y. Yin. Limiting spectral distribution for a class of random matrices , 1986 .
[10] Cedric E. Ginestet. Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .
[11] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .
[12] Z. D. Bai,et al. The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix , 2010, J. Multivar. Anal..
[13] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[14] C. Parvin. An Introduction to Multivariate Statistical Analysis, 3rd ed. T.W. Anderson. Hoboken, NJ: John Wiley & Sons, 2003, 742 pp., $99.95, hardcover. ISBN 0-471-36091-0. , 2004 .
[15] J. Norris. Appendix: probability and measure , 1997 .
[16] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[17] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[18] Global Fluctuations for Linear Statistics of \beta-Jacobi Ensembles , 2012, 1203.6103.
[19] Z. Bai,et al. On Limiting Empirical Distribution Function of the Eigenvalues of a Multivariate F Matrix. Revised. , 1984 .
[20] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .
[21] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[22] J. W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices , 1995 .