Supereulerian graphs: A survey

A graph is supereulerian if it has a spanning eulerian subgraph. There is a rduction method to determine whether a graph is supereulerian, and it can also be applied to study other concepts, e.g., hamiltonian line graphs, a certain type of double cycle cover, and the total interval number of a graph. We outline the research on supereulerian graphs, the reduction method, and its applications.

[1]  Hong-Jian Lai,et al.  Collapsible graphs and matchings , 1993, J. Graph Theory.

[2]  Luis A. Goddyn Cycle double covers of graphs with Hamilton paths , 1989, J. Comb. Theory, Ser. B.

[3]  Gerhard Reinelt,et al.  On partitioning the edges of graphs into connected subgraphs , 1985, J. Graph Theory.

[4]  D. R. Lick,et al.  Theory and Applications of Graphs , 1978 .

[5]  W. T. Tutte On the algebraic theory of graph colorings , 1966 .

[6]  Zhi-Hong Chen A degree condition for spanning eulerian subgraphs , 1993, J. Graph Theory.

[7]  Linda M. Lesniak On n-Hamiltonian line graphs , 1977, J. Comb. Theory, Ser. B.

[8]  C. Godsil,et al.  Cycles in graphs , 1985 .

[9]  Dan Archdeacon Face colorings of embedded graphs , 1984, J. Graph Theory.

[10]  Douglas B. West,et al.  Extremal Values of the Interval Number of a Graph , 1980, SIAM J. Matrix Anal. Appl..

[11]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[12]  Henk Jan Veldman,et al.  Existence of dominating cycles and paths , 1983, Discret. Math..

[13]  Brendan D. McKay,et al.  Hamiltonian cycles in cubic 3-connected bipartite planar graphs , 1985, J. Comb. Theory, Ser. B.

[14]  Rainer Bodendiek,et al.  Topics In Combinatorics and Graph Theory , 1992 .

[15]  Henk Jan Veldman,et al.  On circuits and pancyclic line graphs , 1986, J. Graph Theory.

[16]  Dan Gusfield,et al.  Connectivity and Edge-Disjoint Spanning Trees , 1983, Information Processing Letters.

[17]  Herbert Fleischner,et al.  The importance of being Euler , 1974 .

[18]  Mark N. Ellingham,et al.  Non-hamiltonian 3-connected cubic bipartite graphs , 1983, J. Comb. Theory, Ser. B.

[19]  Luis Goddyn A Girth Requirement for the Double Cycle Cover Conjecture , 1985 .

[20]  Paul A. Catlin,et al.  Double cycle covers and the petersen graph , 1989, J. Graph Theory.

[21]  Oswald Veblen,et al.  An Application of Modular Equations in Analysis Situs , 2022 .

[22]  Lane H. Clark On hamiltonian line graphs , 1984, J. Graph Theory.

[23]  Alan Frieze,et al.  Edge disjoint spanning trees in random graphs , 1990 .

[24]  Paul A. Catlin,et al.  Nonsupereulerian Graphs with Large Size , 1991 .

[25]  G. Chartrand,et al.  The Point‐Arboricity of Planar Graphs , 1969 .

[26]  Myriam Preissmann Sur les colorations des arêtes des graphes cubiques. (On colors of cubic graph ridges) , 1981 .

[27]  Kenneth Appel,et al.  The Four-Color Problem , 1978 .

[28]  Henri Thuillier,et al.  On some conjectures on cubic 3-connected graphs , 1990, Discret. Math..

[29]  Paul A. Catlin Spanning trails , 1987, J. Graph Theory.

[30]  Martin Aigner,et al.  The total interval number of a graph , 1989, J. Comb. Theory, Ser. B.

[31]  Paul A. Catlin Contractions of graphs with no spanning eulerian subgraphs , 1988, Comb..

[32]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .

[33]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[34]  Zhi-Hong Chen Reductions of graphs and spanning Eulerian subgraphs , 1991 .

[35]  H. Fleischner Eulerian graphs and related topics , 1990 .

[36]  X Cai S-CIRCUITS AND HAMILTONIANITY OF LINE GRAPHS , 1988 .

[37]  Paul A. Catlin,et al.  A reduction method to find spanning Eulerian subgraphs , 1988, J. Graph Theory.

[38]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[41]  Hong-Jian Lai Reduced graphs of diameter two , 1990, J. Graph Theory.

[42]  Michael Tarsi,et al.  Semi-duality and the cycle double cover conjecture , 1986, J. Comb. Theory, Ser. B.

[43]  S. L. Hakimi,et al.  A Note on the Vertex Arboricity of a Graph , 1989, SIAM J. Discret. Math..

[44]  William R. Pulleyblank,et al.  A note on graphs spanned by Eulerian graphs , 1979, J. Graph Theory.

[45]  Alan A. Bertossi,et al.  The Edge Hamiltonian Path Problem is NP-Complete , 1981, Inf. Process. Lett..

[46]  Ortrud R. Oellermann,et al.  An Eulerian exposition , 1986, J. Graph Theory.

[47]  Terry A. McKee Recharacterizing Eulerian: Intimations of new duality , 1984, Discret. Math..

[48]  Amanda G. Chetwynd,et al.  Snarks and supersnarks. , 1981 .

[49]  Siming Zhan,et al.  On hamiltonian line graphs and connectivity , 1991, Discret. Math..

[50]  Bill Jackson,et al.  A Note Concerning some Conjectures on Cyclically 4–Edge Connected 3–Regular Graphs , 1988 .

[51]  Zhi-Hong Chen Supereuleriaun graphs and the Petersen graph , 1991 .

[52]  Sukhamay Kundu,et al.  Bounds on the number of disjoint spanning trees , 1974 .

[53]  Douglas B. West,et al.  The total interval number of a graph, I: Fundamental classes , 1993, Discret. Math..

[54]  Michael Stiebitz,et al.  An historical note: Euler's Königsberg letters , 1988, J. Graph Theory.

[55]  François Jaeger A Note on Sub-Eulerian Graphs , 1979, J. Graph Theory.

[56]  W. T. Tutte,et al.  On the Imbedding of Linear Graphs in Surfaces , 1949 .

[57]  Charles L. Suffel,et al.  The spanning subgraphs of eulerian graphs , 1977, J. Graph Theory.

[58]  Paul A. Catlin Spanning eulerian subgraphs and matchings , 1989, Discret. Math..

[59]  Derek Allan Holton,et al.  The Petersen graph , 1993, Australian mathematical society lecture series.

[60]  J. E. Williamson,et al.  On Spanning and Dominating Circuits in Graphs , 1977, Canadian Mathematical Bulletin.

[61]  W. T. Tutte On Hamiltonian Circuits , 1946 .

[62]  Marko Lovrečič Saražin On the hamiltonian index of a graph , 1993, Discret. Math..

[63]  Herbert Fleischner,et al.  Eine gemeinsame Basis für die Theorie der Eulerschen Graphen und den Satz von Petersen , 1976 .

[64]  Frank Harary,et al.  Properties of almost all graphs and complexes , 1979, J. Graph Theory.

[65]  L. Beineke,et al.  Selected Topics in Graph Theory 2 , 1985 .

[66]  C. Hierholzer,et al.  Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren , 1873 .

[67]  Tait 10. Remarks on the previous Communication , 1880 .

[68]  F. Jaeger,et al.  Flows and generalized coloring theorems in graphs , 1979, J. Comb. Theory, Ser. B.

[69]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[70]  Keith R. Matthews,et al.  On the eulericity of a graph , 1978, J. Graph Theory.

[71]  Charles L. Suffel,et al.  Subsemi-Eulerian graphs , 1982 .

[72]  P. Paulraja,et al.  Counterexample to a conjecture on Hamilton cycles , 1987, Discret. Math..

[73]  Henk Jan Veldman,et al.  3-Connected line graphs of triangular graphs are panconnected and 1-hamiltonian , 1987, J. Graph Theory.

[74]  Thomas Martin Kratzke The total interval number of a graph , 1988 .

[75]  Henk Jan Veldman A result on Hamiltonian line graphs involving restrictions on induced subgraphs , 1988, J. Graph Theory.

[76]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[77]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .

[78]  David P. Sumner,et al.  Every connected, locally connected nontrivial graph with no induced claw is hamiltonian , 1979, J. Graph Theory.

[79]  O. Ore Theory of Graphs , 1962 .

[80]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[81]  F. Harary,et al.  On Eulerian and Hamiltonian Graphs and Line Graphs , 1965, Canadian Mathematical Bulletin.

[82]  Hong-Jian Lai On the Hamiltonian index , 1988, Discret. Math..

[83]  Shunichi Toida,et al.  Properties of a Euler graph , 1973 .

[84]  Hong-Jian Lai Contractions and hamiltonian line graphs , 1988, J. Graph Theory.

[85]  Robin J. Wilson,et al.  An Eulerian trail through Königsberg , 1986, J. Graph Theory.

[86]  Jean-Luc Fouquet,et al.  The Chvátal-Erdös condition and pancyclic line-graphs , 1987, Discret. Math..

[87]  Henk Jan Veldman On dominating and spanning circuits in graphs , 1994, Discret. Math..

[88]  Jean-Luc Fouquet,et al.  Pancyclic and panconnected line graphs , 1987, J. Graph Theory.

[89]  Rudolf Ahlswede,et al.  Search Problems , 1987 .

[90]  Pierre Martin,et al.  Cycles Hamiltoniens dans les graphes 4-réguliers 4-connexes , 1976 .

[91]  Hank Jan Veldman,et al.  Existence of spanning and dominating trails and circuits , 1986, J. Graph Theory.

[92]  G. Szekeres,et al.  Polyhedral decompositions of cubic graphs , 1973, Bulletin of the Australian Mathematical Society.

[93]  N. Srinivasan,et al.  Hamilton cycles and closed trails in iterated line graphs , 1990, J. Graph Theory.

[94]  Paul A. Catlin Embedded Graphs, Facial Colorings, and Double Cycle Covers , 1990 .

[95]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.

[96]  Béla Bollobás Advances in graph theory , 1978 .

[97]  Carsten Thomassen,et al.  Reflections on graph theory , 1986, J. Graph Theory.

[98]  Bill Jackson,et al.  Shortest coverings of graphs with cycles , 1983, J. Comb. Theory, Ser. B.

[99]  P. Goodey Hamiltonian circuits in polytopes with even sided faces , 1975 .