Approximation by Convex Polytopes

After some general introductory remarks on approximation in convex geometry we present in the main part of this article asymptotic results on best approximation of convex bodies as the number of vertices, resp. facets of the approximating poly topes tends to infinity. Tools are from (affine) differential geometry. Since the transparent geometric situation in the plane admits much more precise results, this case is treated separately. In higher dimensions the relations to Dirichlet- Voronoi and Delone tilings and to the ball covering problem are indicated. Then algorithmic and, in particular, step-by-step approximation results are discussed. Here tools from number theory are applied. In the material presented emphasis is on the ideas underlying the proofs. Supplementing earlier surveys, the last chapter contains a summary of recent results on approximation of convex bodies.

[1]  R. Schneider Zur optimalen Approximation konvexer Hyperflächen durch Polyeder , 1981 .

[2]  M. Dyer Computing the volume of convex bodies : a case where randomness provably helps , 1991 .

[3]  R. Schneider,et al.  Zwei Extremalaufgaben für konvexe Bereiche , 1972 .

[4]  Step by step approximation of plane convex bodies , 1992 .

[5]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[6]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[7]  S. Szarek,et al.  On parallelepipeds of minimal volume containing a convex symmetric body in ℝn , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Keith Ball,et al.  Normed spaces with a weak-Gordon-Lewis property , 1991 .

[9]  Klaus-Jürgen Förster,et al.  On a problem proposed by H. Braß concerning the remainder term in quadrature for convex functions , 1990 .

[10]  W. R. Pulleyblank,et al.  Polyhedral Combinatorics , 1989, ISMP.

[11]  Allan Pinkus,et al.  Progress in Approximation Theory , 1991 .

[12]  Marek Lassak Approximation of Plane Convex Bodies by Centrally Symmetric Bodies , 1989 .

[13]  R. Gregorac Iterated means of convex bodies , 1992 .

[14]  C. Petty,et al.  AFFINE ISOPERIMETRIC PROBLEMS , 1985 .

[15]  A. Macbeath An extremal property of the hypersphere , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Gerold Wagner On a new method for constructing good point sets on spheres , 1993, Discret. Comput. Geom..

[17]  A. Florian On the perimeter deviation of a convex disc from a polygon , 1992 .

[18]  Christian Buchta,et al.  Random polytopes in a convex polytope, independence of shape, and concentration of vertices , 1993 .

[19]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..

[20]  Rolf Schneider,et al.  Random approximation of convex sets * , 1988 .

[21]  Leonid Khachiyan An inequality for the volume of inscribed ellipsoids , 1990, Discret. Comput. Geom..

[22]  E. M. Bronshteyn,et al.  The approximation of convex sets by polyhedra , 1975 .

[23]  堵丁柱,et al.  COMPUTATIONAL COMPLEXITY OF INTEGRATION AND DIFFERENTIATION OF CONVEX FUNCTIONS , 1989 .

[24]  Jean Bourgain,et al.  Approximating the ball by a minkowski sum of segments with equal length , 1993, Discret. Comput. Geom..

[25]  George E. Andrews,et al.  A LOWER BOUND FOR THE VOLUME OF STRICTLY CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS , 1963 .

[26]  László Fejes Tóth,et al.  Approximation by polygons and polyhedra , 1948 .

[27]  Marek Lassak Approximation of convex bodies by triangles , 1992 .

[28]  Topics in classical number theory , 1984 .

[29]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[30]  E. Hlawka,et al.  The theory of uniform distribution , 1984 .

[31]  G. Rote,et al.  Sandwich approximation of univariate convex functions with an application to separable convex programming , 1991 .

[32]  Approximation in the mean by convex functions , 1989 .

[33]  A. Gleason A Curvature Formula , 1979 .

[34]  G. Rote,et al.  Approximation of convex curves with application to the bicriterial minimum cost flow problem , 1989 .

[35]  Jörg M. Wills,et al.  Convexity and its applications , 1983 .

[36]  R. A. Vitale Lp metrics for compact, convex sets , 1985 .

[37]  P. Gruber Aspects of Approximation of Convex Bodies , 1993 .

[38]  R. A. Vitale,et al.  Polygonal approxi-mation of plane convex bodies , 1975 .

[39]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[40]  P. Gruber Approximation of convex bodies , 1983 .

[41]  László Lovász,et al.  Geometric algorithms and algorithmic geometry , 1990 .

[42]  W. Nowak On the lattice rest of a convex body in ℝs, II , 1985 .

[43]  D. Legg,et al.  The Polya algorithm for convex approximation , 1989 .

[44]  N. Tomczak-Jaegermann Banach-Mazur distances and finite-dimensional operator ideals , 1989 .

[45]  P. Gruber,et al.  Volume approximation of convex bodies by inscribed polytopes , 1988 .

[46]  Béla Bollobás,et al.  Probabilistic Combinatorics and Its Applications , 1992 .

[47]  C. Schütt The convex floating body and polyhedral approximation , 1991 .

[48]  P. Gruber Baire Categories in Convexity , 1993 .

[49]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[50]  J. Lindenstrauss,et al.  The Local Theory of Normed Spaces and its Applications to Convexity , 1993 .

[51]  Y. Sinai,et al.  ON THE NUMBER OF LATTICE POINTS INSIDE A RANDOM DOMAIN , 1992 .

[52]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[53]  Martin E. Dyer,et al.  Random Volumes in the n-Cube , 1990, Polyhedral Combinatorics.

[54]  APPROXIMATION OF LENGTH OF CURVES IN RIEMANNIAN MANIFOLDS BY GEODESIC POLYGONS , 1986 .

[55]  P. Gruber,et al.  Approximation of convex bodies by polytopes , 1982 .

[56]  P. Gruber Asymptotic estimates for best and stepwise approximation of convex bodies II , 1993 .

[57]  Günter Rote,et al.  Approximation of Convex Figures by Pairs of Rectangles , 1990, STACS.

[58]  Rolf Schneider,et al.  Approximation of Convex Bodies by Polytopes , 1981 .

[59]  P. S. Kenderov,et al.  A Dynamical Systems Approach to the Polygonal Approximation of Plane Convex Compacts , 1993 .

[60]  Jean-Louis Goffin,et al.  Variable metric relaxation methods, part II: The ellipsoid method , 1984, Math. Program..

[61]  Rolf Schneider Polyhedral approximation of smooth convex bodies , 1987 .

[62]  László Lovász,et al.  On integer points in polyhedra: A lower bound , 1992, Comb..

[63]  Miklós Simonovits,et al.  The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[64]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[65]  Josef S. Müller Approximation of a ball by random polytopes , 1990 .

[66]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[67]  K. Ball Ellipsoids of maximal volume in convex bodies , 1990, math/9201217.

[68]  G. Sonnevend An optimal sequential algorithm for the uniform approximation of convex functions on $[0,1]^2$. , 1985 .

[69]  I. Bárány Random polytopes in smooth convex bodies , 1992 .