A pending task for the digitalisation of agriculture: A general framework for technologies classification in agriculture

[1]  Toni Stuart,et al.  Foresight , 2022, Encyclopedia of Personality and Individual Differences.

[2]  Patrick De Pelsmacker,et al.  Growers’ adoption intention of innovations is crucial to establish a sustainable greenhouse horticultural industry , 2021, Journal of Cleaner Production.

[3]  P. Bertoldi,et al.  Towards the EU Green Deal: Local key factors to achieve ambitious 2030 climate targets , 2021, Journal of Cleaner Production.

[4]  Alessandro Marino,et al.  A Control Barrier Function Approach to Human-multi-robot Safe Interaction , 2021, 2021 29th Mediterranean Conference on Control and Automation (MED).

[5]  Alessandro Marino,et al.  A Mixed-Integer Linear Programming Formulation for Human Multi-Robot Task Allocation , 2021, 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN).

[6]  Filippo Arrichiello,et al.  A Data-Driven Approach for Contact Detection, Classification and Reaction in Physical Human-Robot Collaboration , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Thomas Heckelei,et al.  Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction , 2021 .

[8]  Christof Ebert,et al.  Technology Trends: Strategies for the New Normal , 2021, IEEE Software.

[9]  Alessandro Marino,et al.  Human Multi-Robot Physical Interaction: a Distributed Framework , 2021, J. Intell. Robotic Syst..

[10]  Jeroen J. L. Candel,et al.  Game-changing potential of the EU’s Farm to Fork Strategy , 2020, Nature Food.

[11]  Manlio Bacco,et al.  IoT as a Digital Game Changer in Rural Areas: the DESIRA Conceptual Approach , 2020, 2020 Global Internet of Things Summit (GIoTS).

[12]  Janusz Kacprzyk,et al.  Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture , 2020, Comput. Ind..

[13]  Victoria Beltran,et al.  Decision support systems for agriculture 4.0: Survey and challenges , 2020, Comput. Electron. Agric..

[14]  Paolo Barsocchi,et al.  The Digitisation of Agriculture: a Survey of Research Activities on Smart Farming , 2019, Array.

[15]  Bert Beck,et al.  Influencing factors and incentives on the intention to adopt precision agricultural technologies within arable farming systems , 2019 .

[16]  Patrizia Busato,et al.  Machine Learning in Agriculture: A Review , 2018, Sensors.

[17]  La Shun L. Carroll,et al.  A Comprehensive Definition of Technology from an Ethological Perspective , 2017, SSRN Electronic Journal.

[18]  G. Zaragoza,et al.  Renewable energy technologies for greenhouses in semi-arid climates , 2017 .

[19]  Aytekin Isman,et al.  Technology and Technique: An Educational Perspective , 2012 .

[20]  Franck Aggeri,et al.  Discipline and Change: How Technologies and Organizational Routines Interact in New Practice Creation , 2012 .

[21]  R. Popper How are foresight methods selected , 2008 .

[22]  Gilda Massari Coelho,et al.  Text mining as a valuable tool in foresight exercises: A study on nanotechnology , 2006 .

[23]  S. Cunningham,et al.  Technology futures analysis: Toward integration of the field and new methods , 2004 .

[24]  S. Fountas,et al.  Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers , 2019, Land Use Policy.

[25]  Bert Beck,et al.  Smart Farming Technologies – Description, Taxonomy and Economic Impact , 2017 .

[26]  Reimund Neugebauer,et al.  Industrie 4.0 - From the Perspective of Applied Research☆ , 2016 .