Ceramic ion conducting membranes

Abstract Ceramic ion conducting membranes are a generic group of materials with many potential large-scale applications in solid oxide fuel cells, oxygen generators and partial oxidation reactors. At present the transport and surface exchange kinetic characteristics are emphasized to maximize ionic fluxes. However, as the dense membrane is often fabricated in the form of a thick film on a supported porous structure there is an increasing realization that the available processing routes and thermomechenical behaviour will also strongly influence the selection of materials. Accordingly, increasing attention is now being given to the effect of the imposed chemical potential gradient upon thermochemical stability and structural integrity.

[1]  V. Cherepanov,et al.  Crystal structure, electrical and magnetic properties of La1 − xSrxCoO3 − y , 1995 .

[2]  Brian C. H. Steele,et al.  Oxygen transport and exchange in oxide ceramics , 1994 .

[3]  Harumi Yokokawa,et al.  Oxygen permeation modelling of perovskites , 1993 .

[4]  N. Sakai,et al.  Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials , 1992 .

[5]  Koichi Yamada,et al.  The relationship between overpotential and the three phase boundary length , 1996 .

[6]  L. Gauckler,et al.  Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes , 1996 .

[7]  D. Maricle,et al.  Enhanced ceria — a low-temperature SOFC electrolyte , 1992 .

[8]  R. Waser Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics , 1995 .

[9]  S. Bebelis,et al.  Electrochemical promotion in catalysis: non-faradaic electrochemical modification of catalytic activity , 1994 .

[10]  U. Balachandran,et al.  Dense ceramic membranes for partial oxygenation of methane , 1994 .

[11]  Roger B. Poeppel,et al.  Dense ceramic membranes for partial oxidation of methane to syngas , 1995 .

[12]  Tatsumi Ishihara,et al.  Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide , 1995 .

[13]  B. Steele Oxygen ion conductors and their technological applications , 1992 .

[14]  Henricus J.M. Bouwmeester,et al.  Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides , 1994 .

[15]  A. J. Appleby,et al.  Fuel cell technology: Status and future prospects☆☆☆ , 1996 .

[16]  Y. Chiang,et al.  Solute Segregation and Grain‐Boundary Impedance in High‐Purity Stabilized Zirconia , 1996 .

[17]  Mixed Conducting Ceramics,et al.  Proceedings of the Second International Symposium on Ionic and Mixed Conducting Ceramics , 1991 .

[18]  Hideaki Inaba,et al.  Ceria-based solid electrolytes , 1996 .

[19]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[20]  H. Bouwmeester,et al.  Ion and mixed conducting oxides as catalysts , 1992 .

[21]  B. Boukamp,et al.  Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites , 1995 .

[22]  T. Mazanec Prospects for ceramic electrochemical reactors in industry , 1994 .

[23]  M. Islam,et al.  Oxygen Ion Migration in Perovskite-Type Oxides , 1995 .

[24]  I. Metcalfe Stabilised-zirconia solid electrolyte membranes in catalysis , 1994 .

[25]  B. Steele Survey of materials selection for ceramic fuel cells II. Cathodes and anodes , 1996 .

[26]  B. Abeles,et al.  Diffusion-reaction in mixed ionic-electronic solid oxide membranes with porous electrodes , 1994 .

[27]  M. Mogensen,et al.  Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition , 1995 .

[28]  Michael B. Bever,et al.  Concise encyclopedia of advanced ceramic materials , 1991 .

[29]  Bruno Scrosati,et al.  Fast Ion Transport in Solids , 1993 .

[30]  F. Berkel,et al.  Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes , 1996 .

[31]  H. Greiner,et al.  Development and Processing of Metallic Cr Based Materials for SOFC Parts , 1995 .

[32]  Ronald L. Cook,et al.  On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells , 1991 .

[33]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[34]  P. Bruce,et al.  Solid State Electrochemistry , 1997 .

[35]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .

[36]  Carlo U. Segre,et al.  Electrical Transport Properties and Defect Structure of SrFeCo0.5 O x , 1996 .

[37]  L. Dessemond,et al.  Model for ion-blocking at internal interfaces in zirconias , 1995 .

[38]  J. Mizusaki Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials , 1992 .

[39]  R. Danzer Mechanical Performance and Lifetime Prediction , 1991 .

[40]  B. Steele Interfacial reactions associated with ceramic ion transport membranes , 1995 .