MicroRNAs: small RNAs with a big role in gene regulation

[1]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[2]  E. Sontheimer,et al.  Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways , 2004, Cell.

[3]  E. Sontheimer,et al.  A Dicer-2-Dependent 80S Complex Cleaves Targeted mRNAs during RNAi in Drosophila , 2004, Cell.

[4]  Xuemei Chen,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004, Science.

[5]  Michelle T. Juarez,et al.  microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity , 2004, Nature.

[6]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Hannon,et al.  RNase III enzymes and the initiation of gene silencing , 2004, Nature Structural &Molecular Biology.

[8]  Arndt Borkhardt,et al.  High expression of precursor microRNA‐155/BIC RNA in children with Burkitt lymphoma , 2004, Genes, chromosomes & cancer.

[9]  Daniela C. Zarnescu,et al.  Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway , 2004, Nature Neuroscience.

[10]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[11]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[12]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[13]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[14]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[15]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[16]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[17]  Gary Ruvkun,et al.  Identification of many microRNAs that copurify with polyribosomes in mammalian neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[19]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[20]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[21]  Ming-Ming Zhou,et al.  Structure and conserved RNA binding of the PAZ domain , 2003, Nature.

[22]  Ji-Joon Song,et al.  The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes , 2003, Nature Structural Biology.

[23]  S. Hake MicroRNAs: A Role in Plant Development , 2003, Current Biology.

[24]  E. Sontheimer,et al.  R2D2 Leads the Silencing Trigger to mRNA's Death Star , 2003, Cell.

[25]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[26]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[27]  J. Bowman,et al.  Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes , 2003, Current Biology.

[28]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[29]  Edwin Cuppen,et al.  The microRNA-producing enzyme Dicer1 is essential for zebrafish development , 2003, Nature Genetics.

[30]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[31]  Michael Z Michael,et al.  Reduced accumulation of specific microRNAs in colorectal neoplasia. , 2003, Molecular cancer research : MCR.

[32]  Konstantin Khrapko,et al.  A microRNA array reveals extensive regulation of microRNAs during brain development. , 2003, RNA.

[33]  Xiaodong Wang,et al.  R2D2, a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway , 2003, Science.

[34]  A. Caudy,et al.  A micrococcal nuclease homologue in RNAi effector complexes , 2003, Nature.

[35]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[36]  Javier F. Palatnik,et al.  Control of leaf morphogenesis by microRNAs , 2003, Nature.

[37]  D. Moazed,et al.  Heterochromatin and Epigenetic Control of Gene Expression , 2003, Science.

[38]  Michael T. McManus,et al.  MicroRNAs and cancer. , 2003, Seminars in cancer biology.

[39]  P. Sharp,et al.  Embryonic stem cell-specific MicroRNAs. , 2003, Developmental cell.

[40]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[41]  V. Ambros,et al.  Role of MicroRNAs in Plant and Animal Development , 2003, Science.

[42]  Marjori Matzke,et al.  Evidence for Nuclear Processing of Plant Micro RNA and Short Interfering RNA Precursors1[w] , 2003, Plant Physiology.

[43]  V. Ambros,et al.  Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. , 2003, Developmental biology.

[44]  V. Ambros MicroRNA Pathways in Flies and Worms Growth, Death, Fat, Stress, and Timing , 2003, Cell.

[45]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[46]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[47]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[48]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[49]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[50]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[51]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[52]  G. Dreyfuss,et al.  Numerous microRNPs in neuronal cells containing novel microRNAs. , 2003, RNA.

[53]  T. Tuschl,et al.  New microRNAs from mouse and human. , 2003, RNA.

[54]  B. Cullen,et al.  Sequence requirements for micro RNA processing and function in human cells. , 2003, RNA.

[55]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[56]  M. Matzke,et al.  RNA-directed DNA methylation in Arabidopsis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Animesh Ray,et al.  DICER-LIKE1: blind men and elephants in Arabidopsis development. , 2002, Trends in plant science.

[59]  Michael Q. Zhang,et al.  The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. , 2002, Genes & development.

[60]  A. Caudy,et al.  Fragile X-related protein and VIG associate with the RNA interference machinery. , 2002, Genes & development.

[61]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[62]  J. Messing,et al.  CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana , 2002, Current Biology.

[63]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[64]  L. Timmons The long and short of siRNAs. , 2002, Molecular cell.

[65]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[66]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[67]  S. Cohen,et al.  The bantam gene regulates Drosophila growth. , 2002, Genetics.

[68]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[69]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[70]  G. Hannon RNA interference : RNA , 2002 .

[71]  A. Pasquinelli,et al.  Control of developmental timing by micrornas and their targets. , 2002, Annual review of cell and developmental biology.

[72]  D. Court,et al.  Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. , 2001, Structure.

[73]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[74]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[75]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[76]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[77]  A. Caudy,et al.  Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi , 2001, Science.

[78]  B. Bass,et al.  A Role for the RNase III Enzyme DCR-1 in RNA Interference and Germ Line Development in Caenorhabditis elegans , 2001, Science.

[79]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[80]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[81]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[82]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[83]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[84]  B. Panning,et al.  X inactivation: Tsix and Xist as yin and yang , 2000, Current Biology.

[85]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[86]  M. Matzke,et al.  Transcriptional silencing and promoter methylation triggered by double‐stranded RNA , 2000, The EMBO journal.

[87]  G. del Solar,et al.  Plasmid copy number control: an ever‐growing story , 2000, Molecular microbiology.

[88]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[89]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[90]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[91]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[92]  R. Plasterk,et al.  mut-7 of C. elegans, Required for Transposon Silencing and RNA Interference, Is a Homolog of Werner Syndrome Helicase and RNaseD , 1999, Cell.

[93]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[94]  D. Baulcombe Viruses and gene silencing in plants. , 1999, Archives of virology. Supplementum.

[95]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[96]  G. Jürgens,et al.  Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis , 1998, The EMBO journal.

[97]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[98]  G. Ruvkun,et al.  A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. , 1996, Genes & development.

[99]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[100]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[101]  G. Ruvkun,et al.  Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. , 1991, Genes & development.

[102]  V. Ambros A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans , 1989, Cell.

[103]  Gary Ruvkun,et al.  The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch , 1989, Nature.

[104]  H. Horvitz,et al.  Heterochronic mutants of the nematode Caenorhabditis elegans. , 1984, Science.

[105]  Martin Chalfie,et al.  Mutations that lead to reiterations in the cell lineages of C. elegans , 1981, Cell.