Infinite Toeplitz and Laurent matrices with localized impurities
暂无分享,去创建一个
[1] Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[2] David R. Nelson,et al. Vortex pinning and non-Hermitian quantum mechanics , 1997 .
[3] Richard M. Beam,et al. The Asymptotic Spectra of Banded Toeplitz and Quasi-Toeplitz Matrices , 1993, SIAM J. Sci. Comput..
[4] Mark Ainsworth,et al. The graduate student's guide to numerical analysis '98 : lecture notes from the VIII EPSRC Summer School in Numerical Analysis , 1999 .
[5] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[6] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[7] Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] Diederich Hinrichsen,et al. Spectral value sets: a graphical tool for robustness analysis , 1993 .
[9] D. Hinrichsen,et al. Real and Complex Stability Radii: A Survey , 1990 .
[10] E. Gallestey,et al. Spectral value sets of closed linear operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[12] A. Böttcher. Pseudospectra and Singular Values of Large Convolution Operators , 1994 .
[13] L. Trefethen,et al. Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.
[14] V. I. Sokolov,et al. The spectra of large Toeplitz band matrices with a randomly perturbed entry , 2003, Math. Comput..
[15] L. A. Coburn,et al. Weyl's theorem for nonnormal operators , 1966 .
[16] H. Landau,et al. On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .