추계적 페트리넷을 통한 동적 환경에서의 지능적인 환경정보의 갱신

This paper proposes an intelligent decision framework for update of the environment model using GSPN(generalized stochastic petri nets). The GSPN has several advantages over direct use of the Markov Process. The modeling, analysis, and performance evaluation are conducted on the mathematical basis. By adopting the probabilistic approach, our decision framework helps the robot to decide the time to update the map. The robot navigates autonomously for a long time in dynamic environments. Experimental results show that the proposed scheme is useful for service robots which work semi-permanently and improves dependability of navigation in dynamic environments.