Molecular systematics and biogeography of the southern South american freshwater "crabs" Aegla (decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches.

Recently new heuristic genetic algorithms such as Treefinder and MetaGA have been developed to search for optimal trees in a maximum likelihood (ML) framework. In this study we combined these methods with other standard heuristic approaches such as ML and maximum parsimony hill-climbing searches and Bayesian inference coupled with Markov chain Monte Carlo techniques under homogeneous and mixed models of evolution to conduct an extensive phylogenetic analysis of the most abundant and widely distributed southern South American freshwater"crab,"the Aegla(Anomura: Aeglidae). A total of 167 samples representing 64 Aegla species and subspecies were sequenced for one nuclear (28S rDNA) and four mitochondrial (12S and 16S rDNA, COI, and COII) genes (5352 bp total). Additionally, six other anomuran species from the genera Munida,Pachycheles, and Uroptychus(Galatheoidea), Lithodes(Paguroidea), and Lomis(Lomisoidea) and the nuclear 18S rDNA gene (1964 bp) were included in preliminary analyses for rooting the Aegla tree. Nonsignificantly different phylogenetic hypotheses resulted from all the different heuristic methods used here, although the best scored topologies found under the ML hill-climbing, Bayesian, and MetaGA approaches showed considerably better likelihood scores (Delta> 54) than those found under the MP and Treefinder approaches. Our trees provided strong support for most of the recognized Aegla species except for A. cholchol,A. jarai,A. parana,A. marginata, A. platensis, and A. franciscana, which may actually represent multiple species. Geographically, the Aegla group was divided into a basal western clade (21 species and subspecies) composed of two subclades with overlapping distributions, and a more recent central-eastern clade (43 species) composed of three subclades with fairly well-recognized distributions. This result supports the Pacific-Origin Hypothesis postulated for the group; alternative hypotheses of Atlantic or multiple origins were significantly rejected by our analyses. Finally, we combined our phylogenetic results with previous hypotheses of South American paleodrainages since the Jurassic to propose a biogeographical framework of the Aegla radiation.

[1]  E. Jaillard,et al.  La présence de fossiles marins dans le Crétacé terminal des Andes centrales et ses conséquences paléogéographiques , 1993 .

[2]  M. Pérez‐Losada,et al.  PHYLOGENETIC RELATIONSHIPS AMONG THE SPECIES OF AEGLA (ANOMURA: AEGLIDAE) FRESHWATER CRABS FROM CHILE , 2002 .

[3]  D. Scheltinga,et al.  Spermatozoal morphology of the freshwater anomuran Aegla longirostri Bond-Buckup & Buckup, 1994 (Crustacea : Decapoda : Aeglidae) from South America , 2002 .

[4]  J. Wiens,et al.  Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). , 2002, Systematic biology.

[5]  K. Glasgow,et al.  Los Angeles, California , 2003 .

[6]  K. Strimmer,et al.  Inferring confidence sets of possibly misspecified gene trees , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  P. E. Potter The Mesozoic and Cenozoic paleodrainage of South America: a natural history , 1997 .

[8]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[9]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[10]  J. Morrone,et al.  Distributional patterns of freshwater Decapoda (Crustacea: Malacostraca) in southern South America: a panbiogeographic approach , 1994 .

[11]  A. Lemmon,et al.  The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Ortmann The geographical distribution of freshwater decapods and its bearing upon ancient geography / by A.E. Ortmann. , 2010 .

[13]  T. Buckley,et al.  Model misspecification and probabilistic tests of topology: evidence from empirical data sets. , 2002, Systematic biology.

[14]  Ziheng Yang,et al.  Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene Loci and calibration points, with application to a radiation of cute-looking mouse lemur species. , 2003, Systematic biology.

[15]  Keith A. Crandall,et al.  CRAYFISH MOLECULAR SYSTEMATICS: USING A COMBINATION OF PROCEDURES TO ESTIMATE PHYLOGENY , 1996 .

[16]  A. D. Valle,et al.  Aegla (crustacea : anomura) en el lago huechulafquen (neuquen, argentina) y algunas implicancias filogeneticas para aeglidae del centro - oeste de argentina , 1985 .

[17]  M. Pérez‐Losada,et al.  Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches. , 2004, Systematic biology.

[18]  P. Coney,et al.  Consolidation of the American Cordilleras , 1994 .

[19]  K. Crandall,et al.  Phylogeny Estimation and Hypothesis Testing Using Maximum Likelihood , 1997 .

[20]  L. Marshall,et al.  Late Oligocene-Early Miocene compressional tectosedimentary episode and associated land-mammal faunas in the Andes of central Chile and adjacent Argentina (32–37°s) , 1994 .

[21]  C. Swisher,et al.  Stratigraphy and chronology of Upper Cretaceous–lower Paleogene strata in Bolivia and northwest Argentina , 1997 .

[22]  Joel Cracraft,et al.  Species Concepts and Speciation Analysis , 1983 .

[23]  W. Schmitt The species of Aegla , endemic South American fresh-water crustaceans , 1942 .

[24]  George E. Davis,et al.  An Updated Classification Of The Recent Crustacea , 2001 .

[25]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[26]  R. Feldmann Haumuriaegla glaessneri n. gen. and sp. (Decapoda; Anomura; Aeglidae) from Haumurian (Late cretaceous) rocks near Cheviot, New Zealand , 1984 .

[27]  J. Huelsenbeck,et al.  Potential applications and pitfalls of Bayesian inference of phylogeny. , 2002, Systematic biology.

[28]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[29]  John C. Avise,et al.  PHYLOGENETIC RELATIONSHIPS OF MITOCHONDRIAL DNA UNDER VARIOUS DEMOGRAPHIC MODELS OF SPECIATION , 1986 .

[30]  C. Cunningham,et al.  Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  C. Ferraris Phylogeny and Classification of Neotropical Fishes , 2000, Copeia.

[32]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[33]  ohn,et al.  Geographic Origin of Human Mitochondrial DNA: Accommodating Phylogenetic Uncertainty and Model Comparison , 2002 .

[34]  M. Pérez‐Losada,et al.  Conservation phylogenetics of Chilean freshwater crabs Aegla (Anomura, Aeglidae): assigning priorities for aquatic habitat protection , 2002 .

[35]  J. Wiens Combining data sets with different phylogenetic histories. , 1998, Systematic biology.

[36]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[37]  S. Richter,et al.  Complex data produce better characters. , 2004, Systematic biology.

[38]  G. Prance,et al.  Biological Diversification in the Tropics , 1983 .

[39]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[40]  W C Wheeler,et al.  The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. , 1997, Systematic biology.

[41]  R. Feldmann,et al.  Early Cretaceous arthropods from the Tlayúa Formation at Tepexi de Rodríguez, Puebla, México , 1998, Journal of Paleontology.

[42]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[43]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[44]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[45]  S. Karlin,et al.  Evolutionary Processes and Theory , 1986 .

[46]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[47]  Q. Wheeler,et al.  The Out-Group Comparison Method of Character Analysis , 1981 .

[48]  R. Ringuelet Consideraciones sobre las relaciones filogeneticas entre las especies del genero Aegla Leach. (Decapodos anomuros) , 1949 .

[49]  Georgina Bond-Buckup,et al.  A familia Aeglidae (Crustacea, Decapoda, Anomura) , 1994 .

[50]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[51]  M. Whiting Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera , 2002 .