Silicate liquid immiscibility in impact melts

We have investigated silicate emulsions in impact glasses and impact melt rocks from the Wabar (Saudi Arabia), Kamil (Egypt), Barringer (USA), and Tenoumer (Mauritania) impact structures, and in experimentally generated impact glasses and laser‐generated glasses (MEMIN research unit) by scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy. Textural evidence of silicate liquid immiscibility includes droplets of one glass disseminated in a chemically distinct glassy matrix; sharp phase boundaries (menisci) between the two glasses; deformation and coalescence of droplets; and occurrence of secondary, nanometer‐sized quench droplets in Si‐rich glasses. The compositions of the conjugate immiscible liquids (Si‐rich and Fe‐rich) are consistent with phase separation in two‐liquid fields in the general system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5. Major‐element partition coefficients are well correlated with the degree of polymerization (NBO/T) of the Si‐rich melt: Fe, Ca, Mg, and Ti are concentrated in the poorly polymerized, Fe‐rich melt, whereas K, Na, and Si prefer the highly polymerized, Si‐rich melt. Partitioning of Al is less pronounced and depends on bulk melt composition. Thus, major element partitioning between the conjugate liquids closely follows trends known from tholeiitic basalts, lunar basalts, and experimental analogs. The characteristics of impact melt inhomogeneity produced by melt unmixing in a miscibility gap are then compared to impact melt inhomogeneity caused by incomplete homogenization of different (miscible or immiscible) impact melts that result from shock melting of different target lithologies from the crater's melt zone, which do not fully homogenize and equilibrate due to rapid quenching. By taking previous reports on silicate emulsions in impact glasses into account, it follows that silicate impact melts of variable composition, cooling rate, and crystallization history might readily unmix during cooling, thereby rendering silicate liquid immiscibility a much more common process in the evolution of impact melts than previously recognized.

[1]  Kevin R. Housen,et al.  Impact Cratering: A Geologic Process , 1987 .

[2]  L. Hecht,et al.  Laser‐induced melting experiments: Simulation of short‐term high‐temperature impact processes , 2017 .

[3]  L. Hecht,et al.  Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core–mantle boundaries , 2017 .

[4]  D. Kring Shock Metamorphism and Impact Melting ❖ ❖ ❖ , 2017 .

[5]  L. Hecht,et al.  Correlating laser‐generated melts with impact‐generated melts: An integrated thermodynamic‐petrologic approach , 2016 .

[6]  L. Folco,et al.  Target-projectile interaction during impact melting at Kamil Crater, Egypt , 2016 .

[7]  L. Hecht,et al.  Tenoumer impact crater, Mauritania: Impact melt genesis from a lithologically diverse target , 2016 .

[8]  G. Osinski,et al.  Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona , 2015 .

[9]  M. Zolensky,et al.  Devolatilization or melting of carbonates at Meteor Crater, AZ? , 2015 .

[10]  L. Folco,et al.  Microscopic impactor debris in the soil around Kamil crater (Egypt): Inventory, distribution, total mass, and implications for the impact scenario , 2015 .

[11]  M. Martini,et al.  Thermoluminescence dating of the Kamil impact crater (Egypt) , 2015 .

[12]  I. Veksler,et al.  Silicate Liquid Immiscibility in Layered Intrusions , 2015 .

[13]  F. Schäfer,et al.  Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation , 2014 .

[14]  L. Folco,et al.  Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt , 2014 .

[15]  L. Folco,et al.  Cosmic ray exposure and pre‐atmospheric size of the Gebel Kamil iron meteorite , 2014 .

[16]  L. Hecht,et al.  Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments , 2014 .

[17]  C. Koeberl,et al.  Impact structures in Africa: A review , 2014, Journal of African earth sciences.

[18]  M. Halawani,et al.  The Wabar impact craters, Saudi Arabia, revisited , 2013 .

[19]  T. Grove,et al.  Compositional and kinetic controls on liquid immiscibility in ferrobasalt–rhyolite volcanic and plutonic series , 2013 .

[20]  J. Hammer,et al.  Kinetics of cooling- and decompression-induced crystallization in hydrous mafic-intermediate magmas , 2013 .

[21]  H. Palme,et al.  Silicate liquid immiscibility in the ~ 2.5 Ga Fe-rich andesite at the top of the Dongargarh large igneous province (India) , 2013 .

[22]  Thomas Kenkmann,et al.  Chemical modification of projectile residues and target material in a MEMIN cratering experiment , 2013 .

[23]  F. Schäfer,et al.  The MEMIN research unit: Scaling impact cratering experiments in porous sandstones , 2013 .

[24]  A. Radwan,et al.  Geological and geophysical investigation of Kamil crater, Egypt , 2012 .

[25]  Matthias Ebert,et al.  Chemical projectile–target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia , 2012 .

[26]  T. Grove,et al.  Experiments on liquid immiscibility along tholeiitic liquid lines of descent , 2012, Contributions to Mineralogy and Petrology.

[27]  N. Cluzel,et al.  Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap , 2011 .

[28]  J. Longhi Silicate liquid immiscibility in isothermal crystallization experiments , 2011 .

[29]  Massimo D'Orazio,et al.  Gebel Kamil: The iron meteorite that formed the Kamil crater (Egypt) , 2011 .

[30]  M. Martino,et al.  Kamil Crater (Egypt): Ground truth for small-scale meteorite impacts on Earth , 2011 .

[31]  L. Folco,et al.  The Kamil Crater in Egypt , 2010, Science.

[32]  D. Dingwell,et al.  Interfacial tension between immiscible liquids in alkaline earth – boron oxide binary systems , 2010 .

[33]  R. Wirth,et al.  Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale , 2009 .

[34]  N. Artemieva,et al.  The Canyon Diablo impact event: Projectile motion through the atmosphere , 2009 .

[35]  A. Philpotts Comments on: Liquid Immiscibility and the Evolution of Basaltic Magma , 2008 .

[36]  D. Dingwell,et al.  Liquid unmixing kinetics and the extent of immiscibility in the system K2O-CaO-FeO-Al2O3-SiO2 , 2008 .

[37]  D. Dingwell,et al.  Liquid Immiscibility and the Evolution of Basaltic Magma , 2007 .

[38]  C. Floss,et al.  Petrology of silicate inclusions in the Sombrerete ungrouped iron meteorite: Implications for the origins of IIE‐type silicate‐bearing irons , 2006 .

[39]  D. Dingwell,et al.  Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis , 2006 .

[40]  M. Bogaerts,et al.  Experiments on silicate melt immiscibility in the system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5 and implications for natural magmas , 2006 .

[41]  D. Günther,et al.  Element Partitioning: The Role of Melt Structure and Composition , 2006, Science.

[42]  M. Bogaerts,et al.  Experiments on silicate melt immiscibility in the system Fe 2 SiO 4 – KAlSi 3 O 8 – SiO 2 – CaO – MgO – TiO 2 – P 2 O 5 and implications for natural magmas , 2006 .

[43]  G. Ori,et al.  Chemical compositions of impact melt breccias and target rocks from the Tenoumer impact crater, Mauritania , 2005 .

[44]  I. Veksler,et al.  Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion , 2005 .

[45]  E. Scott,et al.  Geochemistry of target rocks, impact-melt particles, and metallic spherules from Meteor Crater, Arizona: Empirical evidence on the impact process , 2005 .

[46]  E. Shoemaker,et al.  Luminescence dating of the Wabar meteorite craters, Saudi Arabia , 2004 .

[47]  Pierre Hudon,et al.  The nature of phase separation in binary oxide melts and glasses. I. Silicate systems , 2002 .

[48]  F. Hörz,et al.  Petrographic studies of the impact melts from Meteor Crater, Arizona, USA , 2002 .

[49]  B. Dressler,et al.  Terrestrial impact melt rocks and glasses , 2001 .

[50]  R. Brow,et al.  Introduction to Glass Science and Technology , 1999 .

[51]  T. See,et al.  Compositional variation and mixing of impact melts on microscopic scales , 1998 .

[52]  E. Schoemaker,et al.  Geology of the Wabar Meteorite Craters, Saudi Arabia , 1997 .

[53]  P. C. Hess Chapter 6. THERMODYNAMIC MIXING PROPERTIES AND THE STRUCTURE OF SILICATE MELTS , 1995 .

[54]  J. Wasson,et al.  Classification and origin of IAB and IIICD iron meteorites , 1995 .

[55]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory* , 1994 .

[56]  F. Hörz,et al.  Dissemination and fractionation of projectile materials in the impact melts from Wabar Crater, Saudi Arabia , 1992 .

[57]  James R. Arnold,et al.  In situ10Be-26Al exposure ages at Meteor Crater, Arizona , 1991 .

[58]  Fred M. Phillips,et al.  Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish , 1991 .

[59]  M. Zolensky,et al.  Why are blue zhamanshinites blue Liquid immiscibility in an impact melt , 1991 .

[60]  J. Wasson,et al.  Compositional range in the Canyon Diablo meteoroid , 1990 .

[61]  T. See,et al.  Heterogeneous dissemination of projectile materials in the impact melts from Wabar crater, Saudi Arabia , 1989 .

[62]  A. Philpotts,et al.  Effect of magma oxidation state on the extent of silicate liquid immiscibility in a tholeiitic basalt , 1983 .

[63]  R. Powell,et al.  The low temperature field of liquid immiscibility in the system K2O-Al2O3-FeO-SiO2 with special reference to the join fayalite-leucite-silica , 1983 .

[64]  A. Philpotts Compositions of immiscible liquids in volcanic rocks , 1982 .

[65]  P. C. Hess,et al.  The structural role of Al2O3 and TiO2 in immiscible silicate liquids in the system SiO2-MgO-CaO-FeO-TiO2-Al2O3 , 1980 .

[66]  J. A. Norberg,et al.  Reference Samples for Electron Microprobe Analysis , 1980 .

[67]  A. K. V. Groos,et al.  Phase relations in the system K 2 O-FeO-Al 2 O 3 -SiO 2 at 1 atmosphere with special emphasis on low temperature liquid immiscibility , 1979 .

[68]  A. Philpotts Textural evidence for liquid immiscibility in tholeiites , 1978, Mineralogical Magazine.

[69]  E. Roedder Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity , 1978 .

[70]  P. C. Hess,et al.  Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning , 1978 .

[71]  D. Roddy Pre-impact geologic conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientations of joints, faults and walls at Meteor Crater, Arizona , 1978 .

[72]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[73]  D. Brownlee,et al.  Metal spherules in Wabar, Monturaqui, and Henbury impactites. [iron meteorites] , 1976 .

[74]  P. F. James Liquid-phase separation in glass-forming systems , 1975 .

[75]  R. F. Fudali Genesis of the melt rocks at Tenoumer Crater, Mauritania , 1974 .

[76]  W. R. Kelly,et al.  The chemical composition of metallic spheroids and metallic particles within impactite from Barringer Meteorite Crater, Arizona , 1974 .

[77]  L. Walter,et al.  Indications of fluid immiscibility in glass from West Clearwater Lake impact crater, Quebec, Canada , 1974 .

[78]  N. Short,et al.  Tenoumer crater, Mauritania - Age and petrologic evidence for origin by meteorite impact , 1970 .

[79]  E. Roedder,et al.  Lunar petrology of silicate melt inclusions, Apollo 11 rocks , 1970 .

[80]  J. Fahey,et al.  Coesite from Wabar Crater, near Al Hadida, Arabia , 1961, Science.

[81]  Eugene M. Shoemaker,et al.  Impact mechanics at Meteor Crater, Arizona , 1959 .

[82]  H. H. Nininger Arizona's Meteorite Crater , 1956 .

[83]  E. Roedder Low temperature liquid immiscibility in the system K2O-FeO-Al203-SiO2 , 1951 .

[84]  Bartoschewitz Meteorite Catalogue of Meteorites , 1940, Nature.

[85]  E. Blackwelder Meteor Crater, Arizona , 1946, Nature.

[86]  H. J. Philby The Empty Quarter: Being a Description of the Great South Desert of Arabia Known as Rub' al Khali , 1933 .

[87]  N. L. Bowen,et al.  The system CaO-FeO-SiO 2 , 1933 .

[88]  L. J. Spencer Meteoric Iron and Silica-Glass from the Meteorite Craters of Henbury (Central Australia) and Wabar (Arabia) , 1933 .

[89]  A. H. The Evolution of the Igneous Rocks , 1929, Nature.

[90]  J. W. Creig Immiscibility in silicate melts; Part II , 1927 .

[91]  Reginald Aldworth Daly,et al.  Igneous Rocks and their Origin , 1914, Nature.