Bayesian performance analysis for black-box optimization benchmarking
暂无分享,去创建一个
Ofer M. Shir | Thomas Bäck | Borja Calvo | Hao Wang | Carola Doerr | Josu Ceberio | Jose A. Lozano | J. A. Lozano | Thomas Bäck | Josu Ceberio | Borja Calvo | O. M. Shir | Carola Doerr | Hao Wang
[1] Anne Auger,et al. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.
[2] Marco Zaffalon,et al. Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis , 2016, J. Mach. Learn. Res..
[3] Ofer M. Shir,et al. Benchmarking discrete optimization heuristics with IOHprofiler , 2019, GECCO.
[4] Roberto Basili,et al. KELP: a Kernel-based Learning Platform , 2018, J. Mach. Learn. Res..
[5] Benjamin Doerr,et al. From black-box complexity to designing new genetic algorithms , 2015, Theor. Comput. Sci..
[6] R. Plackett. The Analysis of Permutations , 1975 .
[7] Benjamin Doerr,et al. Fast genetic algorithms , 2017, GECCO.
[8] Gopal Kanji,et al. 100 Statistical Tests , 1994 .
[9] R. Duncan Luce,et al. Individual Choice Behavior , 1959 .
[10] Alessio Benavoli,et al. Joint Analysis of Multiple Algorithms and Performance Measures , 2016, New Generation Computing.
[11] Benjamin Doerr,et al. The (1+λ) evolutionary algorithm with self-adjusting mutation rate , 2017, GECCO.
[12] S. García,et al. An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .
[13] S. Goodman,et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations , 2016, European Journal of Epidemiology.
[14] Thomas Bäck,et al. Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).
[15] Ekhiñe Irurozqui Arrieta,et al. Sampling and learning distance-based probability models for permutation spaces , 2014 .
[16] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[17] Patricia S. O Sullivan,et al. 100 Statistical Tests , 1995 .
[18] Thomas Bäck,et al. Intelligent Mutation Rate Control in Canonical Genetic Algorithms , 1996, ISMIS.
[19] Benjamin Doerr,et al. The ($$1+\lambda $$1+λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate , 2018, Algorithmica.
[20] Mark Wineberg. Introductory Statistics for EC: A Visual Approach , 2016, GECCO.
[21] José Antonio Lozano,et al. Bayesian inference for algorithm ranking analysis , 2018, GECCO.
[22] Hao Wang,et al. IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics , 2018, ArXiv.
[23] Marco Zaffalon,et al. Imprecise Dirichlet Process With Application to the Hypothesis Test on the Probability That X ≤ Y , 2014 .
[24] Marco Zaffalon,et al. A Bayesian Wilcoxon signed-rank test based on the Dirichlet process , 2014, ICML.
[25] Olivier Teytaud,et al. Exploring the MLDA benchmark on the nevergrad platform , 2019, GECCO.
[26] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[27] Szymon Wasik,et al. Optil.io: Cloud Based Platform For Solving Optimization Problems Using Crowdsourcing Approach , 2016, CSCW '16 Companion.
[28] Benjamin Doerr,et al. Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( , 2017, Algorithmica.