The Interdependence of Membrane Shape and Cellular Signal Processing

Cellular membranes are constantly reshaped by vesicular fission and fusion as well as by interactions with the dynamic cytoskeleton. Signaling activity at membranes depends on their geometric parameters, such as surface area and curvature; these affect local concentration and thereby regulate the potency of molecular reactions. A membrane's shape is thus inextricably tied to information processing. Here, we review how a trinity of signaling, cytoskeletal dynamics, and membrane shape interact within a closed-loop causality that gives rise to an energy-consuming, self-organized system that changes shape to sense the extracellular environment.

[1]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[2]  W. Rappel,et al.  Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Pablo A Iglesias,et al.  Cells navigate with a local-excitation, global-inhibition-biased excitable network , 2010, Proceedings of the National Academy of Sciences.

[4]  J. Falke,et al.  Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core. , 2013, Chemistry and physics of lipids.

[5]  J. Couceiro,et al.  Coronin 1A promotes a cytoskeletal‐based feedback loop that facilitates Rac1 translocation and activation , 2011, The EMBO journal.

[6]  Hernán E. Grecco,et al.  Signaling from the Living Plasma Membrane , 2011, Cell.

[7]  A. Marmur,et al.  Marangoni effects in the spreading of liquid mixtures on a solid , 1987 .

[8]  P. Bastiaens,et al.  The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins , 2011, Nature Cell Biology.

[9]  S. Halpain,et al.  A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation , 2007, Brain cell biology.

[10]  C DeLisi,et al.  Interaction between proteins localized in membranes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Joe W. Gray,et al.  Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling , 2013, Proceedings of the National Academy of Sciences.

[12]  P. Bastiaens,et al.  The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins , 2012, Nature Cell Biology.

[13]  Nadine Peyriéras,et al.  Inhibitory signalling to the Arp2/3 complex steers cell migration , 2013, Nature.

[14]  P. Bastiaens,et al.  The Palmitoylation Machinery Is a Spatially Organizing System for Peripheral Membrane Proteins , 2010, Cell.

[15]  David Holcman,et al.  A Mechanism for the Polarity Formation of Chemoreceptors at the Growth Cone Membrane for Gradient Amplification during Directional Sensing , 2010, PloS one.

[16]  J Godovac-Zimmermann,et al.  Phosphotyrosine 1173 Mediates Binding of the Protein-tyrosine Phosphatase SHP-1 to the Epidermal Growth Factor Receptor and Attenuation of Receptor Signaling* , 1998, The Journal of Biological Chemistry.

[17]  Leif Dehmelt,et al.  Spatial organization of intracellular communication: insights from imaging , 2010, Nature Reviews Molecular Cell Biology.

[18]  Michelle D. Wang,et al.  Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors. , 1994, Biophysical journal.

[19]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[20]  Sara Cipolat,et al.  Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency , 2013, Cell.

[21]  E. Zamir,et al.  Oncogenic Signaling from the Plasma Membrane , 2013 .

[22]  Pablo A Iglesias,et al.  Biased excitable networks: how cells direct motion in response to gradients. , 2012, Current opinion in cell biology.

[23]  H V Westerhoff,et al.  Why cytoplasmic signalling proteins should be recruited to cell membranes. , 2000, Trends in cell biology.

[24]  John S. Condeelis,et al.  Chemotaxis in cancer , 2011, Nature Reviews Cancer.

[25]  W. Kolch,et al.  Protein kinase C alpha activates RAF-1 by direct phosphorylation. , 1993, Nature.

[26]  M. Delbruck,et al.  Structural Chemistry and Molecular Biology , 1968 .

[27]  P. Bastiaens,et al.  Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling , 2013, Nature.

[28]  A. Sorkin,et al.  Endocytosis and signalling: intertwining molecular networks , 2009, Nature Reviews Molecular Cell Biology.

[29]  Kun-Liang Guan,et al.  Mechanisms of regulating the Raf kinase family. , 2003, Cellular signalling.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[32]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[33]  Erik F. Y. Hom,et al.  Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. , 1999, Biophysical journal.

[34]  Walter Kolch,et al.  Protein kinase Cα activates RAF-1 by direct phosphorylation , 1993, Nature.

[35]  Susan S. Taylor,et al.  Allosteric Activation of Functionally Asymmetric RAF Kinase Dimers , 2013, Cell.

[36]  Richard A. Firtel,et al.  G protein–independent Ras/PI3K/F-actin circuit regulates basic cell motility , 2007, The Journal of cell biology.

[37]  Ravi Iyengar,et al.  Decoding Information in Cell Shape , 2013, Cell.

[38]  M. Igarashi,et al.  Signaling Pathway Downstream of GABAA Receptor in the Growth Cone , 1996, Journal of neurochemistry.